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1 Solving equations using the Laplace transform

Theorem.(Lerch) If two functions have the same integral transform then they
are equal almost everywhere.

This is the right key to the following problems.

Notation.(Dirac & Heaviside) The Dirac unit impuls function will be denoted
by δ(t). The Heaviside step function will be denoted by u(t).
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1.1 Problem.

Using the Laplace transform find the solution for the following equation

∂

∂t
y(t) = 3− 2 t

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

sY(s)− y(0) = 3
1

s
− 2

1

s2

From this equation we solve Y (s)

y(0) s2 + 3 s− 2

s3

and invert it using the inverse Laplace transform and the same tables again and
obtain

−t2 + 3 t+ y(0)

With the initial conditions incorporated we obtain a solution in the form

−t2 + 3 t

Without the Laplace transform we can obtain this general solution

y(t) = −t2 + 3 t+ C1

Info.

polynomial

Comment.

elementary
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1.2 Problem.

Using the Laplace transform find the solution for the following equation

∂

∂t
y(t) = e(−3 t)

with initial conditions

y(0) = 4

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

sY(s)− y(0) =
1

s+ 3

From this equation we solve Y (s)

y(0) s+ 3 y(0) + 1

s (s+ 3)

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

3
+ y(0)− 1

3
e(−3 t)

With the initial conditions incorporated we obtain a solution in the form

13

3
− 1

3
e(−3 t)

Without the Laplace transform we can obtain this general solution

y(t) = −1

3
e(−3 t) + C1

Info.

exponential function

Comment.

elementary
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1.3 Problem.

Using the Laplace transform find the solution for the following equation

(
∂

∂t
y(t)) + y(t) = f(t)

with initial conditions

y(0) = a

Dy(0) = b

Hint.

convolution

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

sY(s)− y(0) + Y(s) = laplace(f(t), t, s)

From this equation we solve Y (s)

y(0) + laplace(f(t), t, s)

s+ 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) e(−t) +

∫ t

0

f( U1 ) e(−t+ U1) d U1

With the initial conditions incorporated we obtain a solution in the form

a e(−t) +

∫ t

0

f( U1 ) e(−t+ U1) d U1

Without the Laplace transform we can obtain this general solution

y(t) = e(−t)
∫

f(t) et dt+ e(−t) C1

Info.

exp convolution

Comment.

advanced
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1.4 Problem.

Using the Laplace transform find the solution for the following equation

(
∂

∂t
y(t)) + y(t) = et

with initial conditions

y(0) = 1

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

sY(s)− y(0) + Y(s) =
1

s− 1

From this equation we solve Y (s)

y(0) s− y(0) + 1

s2 − 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

2
et + y(0) e(−t) − 1

2
e(−t)

With the initial conditions incorporated we obtain a solution in the form

1

2
et +

1

2
e(−t)

Without the Laplace transform we can obtain this general solution

y(t) =
1

2
et + e(−t) C1

Info.

exponential function

Comment.

elementary
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1.5 Problem.

Using the Laplace transform find the solution for the following equation

(
∂

∂t
y(t))− 5 y(t) = 0

with initial conditions

y(0) = 2

Dy(0) = b

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

sY(s)− y(0)− 5 Y(s) = 0

From this equation we solve Y (s)

y(0)

s− 5

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) e(5 t)

With the initial conditions incorporated we obtain a solution in the form

2 e(5 t)

Without the Laplace transform we can obtain this general solution

y(t) = C1 e(5 t)

Info.

exponential function

Comment.

elementary
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1.6 Problem.

Using the Laplace transform find the solution for the following equation

(
∂

∂t
y(t))− 5 y(t) = e(5 t)

with initial conditions

y(0) = 0

Dy(0) = b

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

sY(s)− y(0)− 5 Y(s) =
1

s− 5

From this equation we solve Y (s)

y(0) s− 5 y(0) + 1

s2 − 10 s+ 25

and invert it using the inverse Laplace transform and the same tables again and
obtain

t e(5 t) + y(0) e(5 t)

With the initial conditions incorporated we obtain a solution in the form

t e(5 t)

Without the Laplace transform we can obtain this general solution

y(t) = t e(5 t) + C1 e(5 t)

Info.

exponential function

Comment.

elementary
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1.7 Problem.

Using the Laplace transform find the solution for the following equation

(
∂

∂t
y(t))− 5 y(t) = e(5 t)

with initial conditions

y(0) = 2

Dy(0) = b

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

sY(s)− y(0)− 5 Y(s) =
1

s− 5

From this equation we solve Y (s)

y(0) s− 5 y(0) + 1

s2 − 10 s+ 25

and invert it using the inverse Laplace transform and the same tables again and
obtain

t e(5 t) + y(0) e(5 t)

With the initial conditions incorporated we obtain a solution in the form

t e(5 t) + 2 e(5 t)

Without the Laplace transform we can obtain this general solution

y(t) = t e(5 t) + C1 e(5 t)

Info.

exponential function

Comment.

elementary
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1.8 Problem.

Using the Laplace transform find the solution for the following equation

∂2

∂t2
y(t) = f(t)

with initial conditions

y(0) = a

Dy(0) = b

Hint.

convolution

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) = laplace(f(t), t, s)

From this equation we solve Y (s)

y(0) s+ D(y)(0) + laplace(f(t), t, s)

s2

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) + D(y)(0) t+

∫ t

0

f( U1 ) (t− U1 ) d U1

With the initial conditions incorporated we obtain a solution in the form

a+ b t+

∫ t

0

f( U1 ) (t− U1 ) d U1

Without the Laplace transform we can obtain this general solution

y(t) =

∫ ∫
f(t) dt+ C1 dt+ C2

Info.

convolution

Comment.

advanced
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1.9 Problem.

Using the Laplace transform find the solution for the following equation

∂2

∂t2
y(t) = 1− t

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) =
1

s
− 1

s2

From this equation we solve Y (s)

s3 y(0) + D(y)(0) s2 + s− 1

s4

and invert it using the inverse Laplace transform and the same tables again and
obtain

−1

6
t3 +

1

2
t2 + D(y)(0) t+ y(0)

With the initial conditions incorporated we obtain a solution in the form

−1

6
t3 +

1

2
t2

Without the Laplace transform we can obtain this general solution

y(t) =
1

2
t2 − 1

6
t3 + C1 t+ C2

Info.

polynomial

Comment.

elementary
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1.10 Problem.

Using the Laplace transform find the solution for the following equation

∂2

∂t2
y(t) = 2 (

∂

∂t
y(t)) + y(t)

with initial conditions

y(0) = 3

Dy(0) = 6

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) = 2 sY(s)− 2 y(0) + Y(s)

From this equation we solve Y (s)

y(0) s+ D(y)(0)− 2 y(0)

s2 − 2 s− 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

2
et
√

2 D(y)(0) sinh(
√

2 t)− 1

2
et y(0)

√
2 sinh(

√
2 t) + et y(0) cosh(

√
2 t)

With the initial conditions incorporated we obtain a solution in the form

3

2
et
√

2 sinh(
√

2 t) + 3 et cosh(
√

2 t)

Without the Laplace transform we can obtain this general solution

y(t) = C1 e((
√
2+1) t) + C2 e(−(

√
2−1) t)

Info.

3 e(2 t)

Comment.

elementary
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1.11 Problem.

Using the Laplace transform find the solution for the following equation

∂2

∂t2
y(t) = 3 + 2 t

with initial conditions

y(0) = a

Dy(0) = b

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) = 3
1

s
+ 2

1

s2

From this equation we solve Y (s)

s3 y(0) + D(y)(0) s2 + 3 s+ 2

s4

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

3
t3 +

3

2
t2 + D(y)(0) t+ y(0)

With the initial conditions incorporated we obtain a solution in the form

1

3
t3 +

3

2
t2 + b t+ a

Without the Laplace transform we can obtain this general solution

y(t) =
3

2
t2 +

1

3
t3 + C1 t+ C2

Info.

polynomial

Comment.

elementary
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1.12 Problem.

Using the Laplace transform find the solution for the following equation

∂2

∂t2
y(t) = 3− 2 t

with initial conditions

y(0) = a

Dy(0) = b

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) = 3
1

s
− 2

1

s2

From this equation we solve Y (s)

s3 y(0) + D(y)(0) s2 + 3 s− 2

s4

and invert it using the inverse Laplace transform and the same tables again and
obtain

−1

3
t3 +

3

2
t2 + D(y)(0) t+ y(0)

With the initial conditions incorporated we obtain a solution in the form

−1

3
t3 +

3

2
t2 + b t+ a

Without the Laplace transform we can obtain this general solution

y(t) =
3

2
t2 − 1

3
t3 + C1 t+ C2

Info.

polynomial

Comment.

elementary
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1.13 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 16 y(t) = 5 δ(t− 1)

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

care!

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 16 Y(s) = 5 e(−s)

From this equation we solve Y (s)

y(0) s+ D(y)(0) + 5 e(−s)

s2 + 16

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) cos(4 t) +
1

4
D(y)(0) sin(4 t) +

5

4
u(t− 1) sin(4 t− 4)

With the initial conditions incorporated we obtain a solution in the form

5

4
u(t− 1) sin(4 t− 4)

Without the Laplace transform we can obtain this general solution

y(t) =
5

4
cos(4)u(t− 1) sin(4 t)− 5

4
sin(4)u(t− 1) cos(4 t) + C1 sin(4 t)

+ C2 cos(4 t)

Info.

u and trig functions

Comment.

advanced
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1.14 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 16 y(t) = 16u(t− 3)− 16

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

care!

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 16 Y(s) = 16
e(−3 s)

s
− 16

1

s

From this equation we solve Y (s)

y(0) s2 + D(y)(0) s+ 16 e(−3 s) − 16

s (s2 + 16)

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) cos(4 t) +
1

4
D(y)(0) sin(4 t) + u(t− 3)− u(t− 3) cos(4 t− 12)− 1

+ cos(4 t)

With the initial conditions incorporated we obtain a solution in the form

−1 + u(t− 3)− u(t− 3) cos(4 t− 12) + cos(4 t)

Without the Laplace transform we can obtain this general solution

y(t) = (u(t− 3) sin(4 t)− u(t− 3) sin(12)− sin(4 t)) sin(4 t)

+ (cos(4 t)u(t− 3)− u(t− 3) cos(12)− cos(4 t)) cos(4 t)

+ C1 sin(4 t) + C2 cos(4 t)

Info.

u and trig functions

Comment.

advanced
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1.15 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 2 (

∂

∂t
y(t)) + 2 y(t) = 0

with initial conditions

y(0) = 1

Dy(0) = −1

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 2 sY(s)− 2 y(0) + 2 Y(s) = 0

From this equation we solve Y (s)

y(0) s+ D(y)(0) + 2 y(0)

s2 + 2 s+ 2

and invert it using the inverse Laplace transform and the same tables again and
obtain

e(−t) D(y)(0) sin(t) + e(−t) y(0) sin(t) + e(−t) y(0) cos(t)

With the initial conditions incorporated we obtain a solution in the form

e(−t) cos(t)

Without the Laplace transform we can obtain this general solution

y(t) = C1 e(−t) sin(t) + C2 e(−t) cos(t)

Info.

e(−t) cos(t)

Comment.

standard
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1.16 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 2 (

∂

∂t
y(t)) + 2 y(t) = f(t)

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

convolution

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 2 sY(s)− 2 y(0) + 2 Y(s) = laplace(f(t), t, s)

From this equation we solve Y (s)

y(0) s+ D(y)(0) + 2 y(0) + laplace(f(t), t, s)

s2 + 2 s+ 2

and invert it using the inverse Laplace transform and the same tables again and
obtain

e(−t) y(0) cos(t) + e(−t) y(0) sin(t) + e(−t) D(y)(0) sin(t)

+

∫ t

0

− f( U1 ) e(−t+ U1) sin(−t+ U1 ) d U1

With the initial conditions incorporated we obtain a solution in the form∫ t

0

− f( U1 ) e(−t+ U1) sin(−t+ U1 ) d U1

Without the Laplace transform we can obtain this general solution

y(t) = −
∫

sin(t) f(t) et dt e(−t) cos(t) +

∫
cos(t) f(t) et dt e(−t) sin(t) + C1 e(−t) cos(t)

+ C2 e(−t) sin(t)

Info.

sin convolution

Comment.

standard
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1.17 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 4 y(t) = 0

with initial conditions

y(0) = 2

Dy(0) = 2

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 4 Y(s) = 0

From this equation we solve Y (s)

y(0) s+ D(y)(0)

s2 + 4

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

2
D(y)(0) sin(2 t) + y(0) cos(2 t)

With the initial conditions incorporated we obtain a solution in the form

sin(2 t) + 2 cos(2 t)

Without the Laplace transform we can obtain this general solution

y(t) = C1 cos(2 t) + C2 sin(2 t)

Info.

trig functions

Comment.

elementary
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1.18 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 4 y(t) = 6 y(t)

with initial conditions

y(0) = 6

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 4 Y(s) = 6 Y(s)

From this equation we solve Y (s)

y(0) s+ D(y)(0)

s2 − 2

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

2

√
2 D(y)(0) sinh(

√
2 t) + y(0) cosh(

√
2 t)

With the initial conditions incorporated we obtain a solution in the form

6 cosh(
√

2 t)

Without the Laplace transform we can obtain this general solution

y(t) = C1 sinh(
√

2 t) + C2 cosh(
√

2 t)

Info.

sinh cosh

Comment.

standard
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1.19 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 4 y(t) = cos(t)

with initial conditions

y(0) = a

Dy(0) = b

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 4 Y(s) =
s

s2 + 1

From this equation we solve Y (s)

s3 y(0) + y(0) s+ D(y)(0) s2 + D(y)(0) + s

s4 + 5 s2 + 4

and invert it using the inverse Laplace transform and the same tables again and
obtain

−1

3
cos(2 t) + y(0) cos(2 t) +

1

2
D(y)(0) sin(2 t) +

1

3
cos(t)

With the initial conditions incorporated we obtain a solution in the form

−1

3
cos(2 t) + a cos(2 t) +

1

2
b sin(2 t) +

1

3
cos(t)

Without the Laplace transform we can obtain this general solution

y(t) = (
1

12
cos(3 t) +

1

4
cos(t)) cos(2 t) + (

1

4
sin(t) +

1

12
sin(3 t)) sin(2 t) + C1 cos(2 t)

+ C2 sin(2 t)

Info.

trig functions

Comment.

standard
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1.20 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 9 (

∂

∂t
y(t)) + 20 y(t) = f(t)

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

convolution

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 9 sY(s)− 9 y(0) + 20 Y(s) = laplace(f(t), t, s)

From this equation we solve Y (s)

y(0) s+ D(y)(0) + 9 y(0) + laplace(f(t), t, s)

s2 + 9 s+ 20

and invert it using the inverse Laplace transform and the same tables again and
obtain

−4 y(0) e(−5 t) + 5 y(0) e(−4 t) −D(y)(0) e(−5 t) + D(y)(0) e(−4 t)

−
∫ t

0

f( U1 ) e(−5 t+5 U1) d U1 +

∫ t

0

f( U2 ) e(−4 t+4 U2) d U2

With the initial conditions incorporated we obtain a solution in the form

−
∫ t

0

f( U1 ) e(−5 t+5 U1) d U1 +

∫ t

0

f( U2 ) e(−4 t+4 U2) d U2

Without the Laplace transform we can obtain this general solution

y(t) = −(−
∫

f(t) e(4 t) dt e(5 t)+

∫
f(t) e(5 t) dt e(4 t)) e(−9 t)+ C1 e(−4 t)+ C2 e(−5 t)

Info.

exp convolution

Comment.

standard
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1.21 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + 9 y(t) = 0

with initial conditions

y(0) = 3

Dy(0) = −5

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + 9 Y(s) = 0

From this equation we solve Y (s)

y(0) s+ D(y)(0)

s2 + 9

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

3
D(y)(0) sin(3 t) + y(0) cos(3 t)

With the initial conditions incorporated we obtain a solution in the form

−5

3
sin(3 t) + 3 cos(3 t)

Without the Laplace transform we can obtain this general solution

y(t) = C1 cos(3 t) + C2 sin(3 t)

Info.

trig functions

Comment.

standard
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1.22 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + y(t) = 0

with initial conditions

y(0) = 0

Dy(0) = 1

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + Y(s) = 0

From this equation we solve Y (s)

y(0) s+ D(y)(0)

s2 + 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) cos(t) + D(y)(0) sin(t)

With the initial conditions incorporated we obtain a solution in the form

sin(t)

Without the Laplace transform we can obtain this general solution

y(t) = C1 cos(t) + C2 sin(t)

Info.

trig functions

Comment.

standard
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1.23 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + y(t) = 2 (

∂

∂t
y(t))

with initial conditions

y(0) = 0

Dy(0) = 1

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + Y(s) = 2 sY(s)− 2 y(0)

From this equation we solve Y (s)

y(0) s+ D(y)(0)− 2 y(0)

s2 + 1− 2 s

and invert it using the inverse Laplace transform and the same tables again and
obtain

t et D(y)(0)− t et y(0) + y(0) et

With the initial conditions incorporated we obtain a solution in the form

t et

Without the Laplace transform we can obtain this general solution

y(t) = C1 et + C2 t et

Info.

t et

Comment.

standard
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1.24 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + y(t) = δ(t)

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

care!

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + Y(s) = 1

From this equation we solve Y (s)

y(0) s+ D(y)(0) + 1

s2 + 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) cos(t) + D(y)(0) sin(t) + sin(t)

With the initial conditions incorporated we obtain a solution in the form

sin(t)

Without the Laplace transform we can obtain this general solution

y(t) = u(t) sin(t) + C1 cos(t) + C2 sin(t)

Info.

u and trig functions

Comment.

standard
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1.25 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + y(t) = f(t)

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

convolution

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + Y(s) = laplace(f(t), t, s)

From this equation we solve Y (s)

y(0) s+ D(y)(0) + laplace(f(t), t, s)

s2 + 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) cos(t) + D(y)(0) sin(t) +

∫ t

0

− f( U1 ) sin(−t+ U1 ) d U1

With the initial conditions incorporated we obtain a solution in the form∫ t

0

f( U1 ) sin(t− U1 ) d U1

Without the Laplace transform we can obtain this general solution

y(t) =

∫
− sin(t) f(t) dt cos(t) +

∫
cos(t) f(t) dt sin(t) + C1 cos(t) + C2 sin(t)

Info.

sin convolution

Comment.

standard
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1.26 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + y(t) = 2u(t− 1)

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

care!

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + Y(s) = 2
e(−s)

s

From this equation we solve Y (s)

y(0) s2 + D(y)(0) s+ 2 e(−s)

s (s2 + 1)

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) cos(t) + D(y)(0) sin(t) + 2u(t− 1)− 2u(t− 1) cos(t− 1)

With the initial conditions incorporated we obtain a solution in the form

2u(t− 1)− 2u(t− 1) cos(t− 1)

Without the Laplace transform we can obtain this general solution

y(t) = (2 cos(t)u(t− 1)− 2u(t− 1) cos(1)) cos(t)

+ (2 sin(t)u(t− 1)− 2u(t− 1) sin(1)) sin(t) + C1 cos(t)

+ C2 sin(t)

Info.

u and trig functions

Comment.

standard
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1.27 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + y(t) = sin(t)

with initial conditions

y(0) = 0

Dy(0) = b

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + Y(s) =
1

s2 + 1

From this equation we solve Y (s)

s3 y(0) + y(0) s+ D(y)(0) s2 + D(y)(0) + 1

s4 + 2 s2 + 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

−1

2
t cos(t) +

1

2
sin(t) + y(0) cos(t) + D(y)(0) sin(t)

With the initial conditions incorporated we obtain a solution in the form

−1

2
t cos(t) +

1

2
sin(t) + b sin(t)

Without the Laplace transform we can obtain this general solution

y(t) = (
1

2
cos(t) sin(t)− 1

2
t) cos(t) +

1

2
sin(t)3 + C1 cos(t) + C2 sin(t)

Info.

t and trig functions

Comment.

standard
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1.28 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t)) + y(t) = t e(−t)

with initial conditions

y(0) = a

Dy(0) = b

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0) + Y(s) =
1

(s+ 1)2

From this equation we solve Y (s)

s3 y(0) + 2 y(0) s2 + y(0) s+ D(y)(0) s2 + 2 D(y)(0) s+ D(y)(0) + 1

s4 + 2 s3 + 2 s2 + 2 s+ 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

−1

2
cos(t) + y(0) cos(t) + D(y)(0) sin(t) +

1

2
e(−t) +

1

2
t e(−t)

With the initial conditions incorporated we obtain a solution in the form

−1

2
cos(t) + a cos(t) + b sin(t) +

1

2
e(−t) +

1

2
t e(−t)

Without the Laplace transform we can obtain this general solution

y(t) = (−(−1

2
t− 1

2
) e(−t) cos(t) +

1

2
sin(t) t e(−t)) cos(t)

+ (−1

2
cos(t) t e(−t) − (−1

2
t− 1

2
) e(−t) sin(t)) sin(t) + C1 cos(t) + C2 sin(t)

Info.

t exp trig functions

Comment.

standard
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1.29 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t))− 2 (

∂

∂t
y(t)) + 2 y(t) = f(t)

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

convolution

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0)− 2 sY(s) + 2 y(0) + 2 Y(s) = laplace(f(t), t, s)

From this equation we solve Y (s)

y(0) s+ D(y)(0)− 2 y(0) + laplace(f(t), t, s)

s2 − 2 s+ 2

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) et cos(t)−y(0) et sin(t)+D(y)(0) et sin(t)+

∫ t

0

−f( U1 ) e(t− U1) sin(−t+ U1 ) d U1

With the initial conditions incorporated we obtain a solution in the form∫ t

0

− f( U1 ) e(t− U1) sin(−t+ U1 ) d U1

Without the Laplace transform we can obtain this general solution

y(t) = −(−
∫

cos(t) f(t) e(−t) dt sin(t) +

∫
sin(t) f(t) e(−t) dt cos(t)) et + C1 et sin(t)

+ C2 et cos(t)

Info.

sin exp convolution

Comment.

standard
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1.30 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t))− 3 (

∂

∂t
y(t)) + 2 y(t) = 4

with initial conditions

y(0) = 2

Dy(0) = 3

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0)− 3 sY(s) + 3 y(0) + 2 Y(s) = 4
1

s

From this equation we solve Y (s)

y(0) s2 + D(y)(0) s− 3 y(0) s+ 4

s (s2 − 3 s+ 2)

and invert it using the inverse Laplace transform and the same tables again and
obtain

2− 4 et + 2 y(0) et − et D(y)(0) + 2 e(2 t) − e(2 t) y(0) + e(2 t) D(y)(0)

With the initial conditions incorporated we obtain a solution in the form

2− 3 et + 3 e(2 t)

Without the Laplace transform we can obtain this general solution

y(t) = 2 + C1 et + C2 e(2 t)

Info.

exp functions

Comment.

standard
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1.31 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t))− 3 (

∂

∂t
y(t)) + 4 y(t) = 0

with initial conditions

y(0) = 1

Dy(0) = 5

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0)− 3 sY(s) + 3 y(0) + 4 Y(s) = 0

From this equation we solve Y (s)

y(0) s+ D(y)(0)− 3 y(0)

s2 − 3 s+ 4

and invert it using the inverse Laplace transform and the same tables again and
obtain

e(3/2 t) y(0) cos(
1

2

√
7 t)−3

7
e(3/2 t) y(0)

√
7 sin(

1

2

√
7 t)+

2

7
e(3/2 t)

√
7 D(y)(0) sin(

1

2

√
7 t)

With the initial conditions incorporated we obtain a solution in the form

e(3/2 t) cos(
1

2

√
7 t) + e(3/2 t)

√
7 sin(

1

2

√
7 t)

Without the Laplace transform we can obtain this general solution

y(t) = C1 e(3/2 t) sin(
1

2

√
7 t) + C2 e(3/2 t) cos(

1

2

√
7 t)

Info.

exp trig functions

Comment.

standard
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1.32 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t))− 4 y(t) = 0

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0)− 4 Y(s) = 0

From this equation we solve Y (s)

y(0) s+ D(y)(0)

s2 − 4

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

4
e(2 t) D(y)(0) +

1

2
e(2 t) y(0) +

1

2
e(−2 t) y(0)− 1

4
e(−2 t) D(y)(0)

With the initial conditions incorporated we obtain a solution in the form

0

Without the Laplace transform we can obtain this general solution

y(t) = C1 cosh(2 t) + C2 sinh(2 t)

Info.

exp functions

Comment.

standard
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1.33 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t))− (

∂

∂t
y(t))− 2 y(t) = 4 t2

with initial conditions

y(0) = 1

Dy(0) = 4

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0)− sY(s) + y(0)− 2 Y(s) = 8
1

s3

From this equation we solve Y (s)

s4 y(0) + D(y)(0) s3 − s3 y(0) + 8

s3 (s2 − s− 2)

and invert it using the inverse Laplace transform and the same tables again and
obtain

−3 + 2 t− 2 t2 +
8

3
e(−t) +

2

3
y(0) e(−t) − 1

3
e(−t) D(y)(0) +

1

3
e(2 t) y(0) +

1

3
e(2 t)

+
1

3
e(2 t) D(y)(0)

With the initial conditions incorporated we obtain a solution in the form

−3 + 2 t− 2 t2 + 2 e(−t) + 2 e(2 t)

Without the Laplace transform we can obtain this general solution

y(t) = −3 + 2 t− 2 t2 + C1 e(2 t) + C2 e(−t)

Info.

polynomial exp functions

Comment.

standard
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1.34 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t))− y(t) = et

with initial conditions

y(0) = 1

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0)−Y(s) =
1

s− 1

From this equation we solve Y (s)

y(0) s2 − y(0) s+ D(y)(0) s−D(y)(0) + 1

s3 − s2 − s+ 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

2
y(0) e(−t) − 1

2
e(−t) D(y)(0) +

1

4
e(−t) +

1

2
y(0) et +

1

2
et D(y)(0)− 1

4
et +

1

2
t et

With the initial conditions incorporated we obtain a solution in the form

3

4
e(−t) +

1

4
et +

1

2
t et

Without the Laplace transform we can obtain this general solution

y(t) = (−1

2
sinh(t) cosh(t) +

1

2
t− 1

2
cosh(t)2) cosh(t)

+ (
1

2
cosh(t)2 +

1

2
sinh(t) cosh(t) +

1

2
t) sinh(t) + C1 cosh(t) + C2 sinh(t)

Info.

polynomial exp functions

Comment.

standard
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1.35 Problem.

Using the Laplace transform find the solution for the following equation

(
∂2

∂t2
y(t))− y(t) = f(t)

with initial conditions

y(0) = a

Dy(0) = b

Hint.

convolution

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (sY(s)− y(0))−D(y)(0)−Y(s) = laplace(f(t), t, s)

From this equation we solve Y (s)

y(0) s+ D(y)(0) + laplace(f(t), t, s)

s2 − 1

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

2
y(0) et +

1

2
y(0) e(−t) +

1

2
et D(y)(0)− 1

2
e(−t) D(y)(0) +

1

2

∫ t

0

f( U1 ) e(t− U1) d U1

− 1

2

∫ t

0

f( U2 ) e(−t+ U2) d U2

With the initial conditions incorporated we obtain a solution in the form

1

2
a et +

1

2
a e(−t) +

1

2
et b− 1

2
e(−t) b+

1

2

∫ t

0

f( U1 ) e(t− U1) d U1

− 1

2

∫ t

0

f( U2 ) e(−t+ U2) d U2

Without the Laplace transform we can obtain this general solution

y(t) =

∫
−sinh(t) f(t) dt cosh(t)+

∫
cosh(t) f(t) dt sinh(t)+ C1 cosh(t)+ C2 sinh(t)

Info.

exp convolution

36



Comment.

standard

37



1.36 Problem.

Using the Laplace transform find the solution for the following equation

(
∂3

∂t3
y(t)) + (

∂

∂t
y(t)) = et

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (s (sY(s)− y(0))−D(y)(0))− (D(2))(y)(0) + sY(s)− y(0) =
1

s− 1

From this equation we solve Y (s)

s3 y(0)− y(0) s2 + D(y)(0) s2 −D(y)(0) s+ (D(2))(y)(0) s− (D(2))(y)(0) + y(0) s− y(0) + 1

s (s3 − s2 + s− 1)

and invert it using the inverse Laplace transform and the same tables again and
obtain

(D(2))(y)(0)+y(0)−1+
1

2
et−1

2
sin(t)+D(y)(0) sin(t)+

1

2
cos(t)−(D(2))(y)(0) cos(t)

With the initial conditions incorporated we obtain a solution in the form

(D(2))(y)(0)− 1 +
1

2
et − 1

2
sin(t) +

1

2
cos(t)− (D(2))(y)(0) cos(t)

Without the Laplace transform we can obtain this general solution

y(t) =
1

2
et + C1 + C2 cos(t) + C3 sin(t)

Info.

trig exp

Comment.

standard

38



1.37 Problem.

Using the Laplace transform find the solution for the following equation

(
∂3

∂t3
y(t)) + (

∂2

∂t2
y(t)) = 6 et + 6 t+ 6

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

no hint

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (s (sY(s)− y(0))−D(y)(0))− (D(2))(y)(0) + s (sY(s)− y(0))−D(y)(0) =

6
1

s− 1
+ 6

1

s2
+ 6

1

s

From this equation we solve Y (s)

s5 y(0) + s4 D(y)(0) + (D(2))(y)(0) s3 − (D(2))(y)(0) s2 − s3 y(0)−D(y)(0) s2 + 12 s2 − 6

s4 (s2 − 1)

and invert it using the inverse Laplace transform and the same tables again and
obtain

−(D(2))(y)(0) + y(0)− 6 t+ D(y)(0) t+ t (D(2))(y)(0) + t3 + 3 et + e(−t) (D(2))(y)(0)

− 3 e(−t)

With the initial conditions incorporated we obtain a solution in the form

−(D(2))(y)(0)− 6 t+ t (D(2))(y)(0) + t3 + 3 et + e(−t) (D(2))(y)(0)− 3 e(−t)

Without the Laplace transform we can obtain this general solution

y(t) = et (t3 e(−t) + 3) + C1 + C2 t+ C3 e(−t)

Info.

polynomial exp functions

Comment.

standard

39



1.38 Problem.

Using the Laplace transform find the solution for the following equation

∂4

∂t4
y(t) = 6 δ(t− 1)

with initial conditions

y(0) = 0

Dy(0) = 0

Hint.

care!

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

s (s (s (sY(s)− y(0))−D(y)(0))− (D(2))(y)(0))− (D(3))(y)(0) = 6 e(−s)

From this equation we solve Y (s)

s3 y(0) + D(y)(0) s2 + (D(2))(y)(0) s+ (D(3))(y)(0) + 6 e(−s)

s4

and invert it using the inverse Laplace transform and the same tables again and
obtain

y(0) + D(y)(0) t+
1

2
(D(2))(y)(0) t2 +

1

6
(D(3))(y)(0) t3 + u(t− 1) t3

− 3u(t− 1) t2 + 3u(t− 1) t− u(t− 1)

With the initial conditions incorporated we obtain a solution in the form

1

2
(D(2))(y)(0) t2 +

1

6
(D(3))(y)(0) t3 + u(t− 1) t3 − 3u(t− 1) t2

+ 3u(t− 1) t− u(t− 1)

Without the Laplace transform we can obtain this general solution

y(t) = u(t− 1) t3 − u(t− 1) + 3u(t− 1) t− 3u(t− 1) t2

+
1

6
C1 t3 +

1

2
C2 t2 + C3 t+ C4

Info.

u polynomial function

Comment.

standard
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1.39 Problem.

Using the Laplace transform find the solution for the following equation

y(t) = t+

∫ t

0

− y(τ) sin(−t+ τ) dτ

with initial conditions

y(0) = a

Dy(0) = b

Hint.

care!

Solution.
We denote Y (s) = L(y)(t) the Laplace transform Y (s) of y(t). We perform the
Laplace transform for both sides of the given equation. For particular functions
we use tables of the Laplace transforms and obtain

Y(s) =
1

s2
+

Y(s)

s2 + 1

From this equation we solve Y (s)

s2 + 1

s4

and invert it using the inverse Laplace transform and the same tables again and
obtain

1

6
t3 + t

With the initial conditions incorporated we obtain a solution in the form

1

6
t3 + t

Without the Laplace transform we can obtain this general solution

not found

Info.

polynomial functions

Comment.

standard
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