Complex variable solved problems

Pavel Pyrih

11:03 May 29, 2012
(public domain)

Contents

1 Residue theorem problems 2
2 Zero Sum theorem for residues problems 76
3 Power series problems 157

Acknowledgement. The following problems were solved using my own procedure in a program Maple V, release 5. All possible errors are my faults.

1 Residue theorem problems

We will solve several problems using the following theorem:

Theorem. (Residue theorem) Suppose U is a simply connected open subset of the complex plane, and w_{1}, \ldots, w_{n} are finitely many points of U and f is a function which is defined and holomorphic on $U \backslash\left\{w_{1}, \ldots, w_{n}\right\}$. If φ is a simply closed curve in U contaning the points w_{k} in the interior, then

$$
\oint_{\varphi} f(z) d z=2 \pi i \sum_{k=1}^{k} \operatorname{res}\left(f, w_{k}\right) .
$$

The following rules can be used for residue counting:

Theorem. (Rule 1) If f has a pole of order k at the point w then

$$
\operatorname{res}(f, w)=\frac{1}{(k-1)!} \lim _{z \rightarrow w}\left((z-w)^{k} f(z)\right)^{(k-1)}
$$

Theorem. (Rule 2) If f, g are holomorphic at the point w and $f(w) \neq 0$. If $g(w)=0, g^{\prime}(w) \neq 0$, then

$$
\operatorname{res}\left(\frac{f}{g}, w\right)=\frac{f(w)}{g^{\prime}(w)}
$$

Theorem. (Rule 3) If h is holomorphic at w and g has a simple pole at w, then $\operatorname{res}(g h, w)=h(w)$ res (g, w).

We will use special formulas for special types of problems:
Theorem. (TYPE I. Integral from a rational function in sin and cos.) If $Q(a, b)$ is a rational function of two complex variables such that for real a, b, $a^{2}+b^{2}=1$ is $Q(a, b)$ finite, then the function

$$
T(z):=Q\left(\frac{z+1 / z}{2}, \frac{z-1 / z}{2 i}\right) /(i z)
$$

is rational, has no poles on the real line and

$$
\int_{0}^{2 \pi} Q(\cos t, \sin t) d t=2 \pi i \cdot \sum_{|a|<1, T(a)=\infty} \operatorname{res}(T, a)
$$

Example

$$
\int_{0}^{2 \pi} \frac{1}{2+\cos (x)} d x
$$

Theorem. (TYPE II. Integral from a rational function.) Suppose P, Q are polynomial of order m, n respectively, and $n-m>1$ and Q has no real roots. Then for the rational function $f=\frac{P}{Q}$ holds

$$
\int_{-\infty}^{+\infty} f(x) d x=2 \pi i \sum_{k} \operatorname{res}\left(f, w_{k}\right)
$$

where all singularities of f with a positive imaginary part are considered in the above sum.

Example

$$
\int_{-\infty}^{+\infty} \frac{1}{1+x^{2}} d x
$$

Theorem. (TYPE III. Integral from a rational function multiplied by cos or $\sin)$ If Q is a rational function such that has no pole at the real line and for $z \rightarrow \infty$ is $Q(z)=O\left(z^{-1}\right)$. For $b>0$ denote $f(z)=Q(z) e^{i b z}$. Then

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} Q(x) \cos (b x) d x=\operatorname{Re}\left(2 \pi i \cdot \sum_{w} \operatorname{res}(f, w)\right) \\
& \int_{-\infty}^{+\infty} Q(x) \sin (b x) d x=\operatorname{Im}\left(2 \pi i \cdot \sum_{w} \operatorname{res}(f, w)\right)
\end{aligned}
$$

where only w with a positive imaginary part are considered in the above sums.

Example

$$
\int_{-\infty}^{+\infty} \frac{\cos (x)}{1+x^{2}} d x
$$

1.1 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{\cos (x)^{2}}{13+12 \cos (x)} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I\left(\frac{1}{2} z+\frac{1}{2} \frac{1}{z}\right)^{2}}{\left(13+6 z+6 \frac{1}{z}\right) z}
$$

We find singularities

$$
\left[\{z=0\},\left\{z=\frac{-3}{2}\right\},\left\{z=\frac{-2}{3}\right\}\right]
$$

The singularity

$$
z=0
$$

is in our region and we will add the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=\frac{13}{144} I
$$

The singularity

$$
z=\frac{-3}{2}
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=\frac{-2}{3}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{-2}{3}, \mathrm{f}(z)\right)=-\frac{169}{720} I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{13}{45} \pi
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{\cos (x)^{2}}{13+12 \cos (x)} d x=\frac{13}{45} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{\cos (x)^{2}}{13+12 \cos (x)} d x=\frac{13}{45} \pi
$$

Info.
not_given

Comment.
no_comment

1.2 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{\cos (x)^{4}}{1+\sin (x)^{2}} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I\left(\frac{1}{2} z+\frac{1}{2} \frac{1}{z}\right)^{4}}{\left(1-\frac{1}{4}\left(z-\frac{1}{z}\right)^{2}\right) z}
$$

We find singularities
$[\{z=0\},\{z=\sqrt{2}+1\},\{z=1-\sqrt{2}\},\{z=\sqrt{2}-1\},\{z=-1-\sqrt{2}\},\{z=\infty\},\{z=-\infty\}]$ The singularity

$$
z=0
$$

is in our region and we will add the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=\frac{5}{2} I
$$

The singularity

$$
z=\sqrt{2}+1
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=1-\sqrt{2}
$$

is in our region and we will add the following residue

$$
\operatorname{res}(1-\sqrt{2}, \mathrm{f}(z))=\frac{-768 I \sqrt{2}+1088 I}{768-544 \sqrt{2}}
$$

The singularity

$$
z=\sqrt{2}-1
$$

is in our region and we will add the following residue

$$
\operatorname{res}(\sqrt{2}-1, \mathrm{f}(z))=\frac{-768 I \sqrt{2}+1088 I}{768-544 \sqrt{2}}
$$

The singularity

$$
z=-1-\sqrt{2}
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=\infty
$$

will be skipped because only residues at finite singularities are counted. The singularity

$$
z=-\infty
$$

will be skipped because only residues at finite singularities are counted.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{5}{2} I+2 \frac{-768 I \sqrt{2}+1088 I}{768-544 \sqrt{2}}\right)
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{\cos (x)^{4}}{1+\sin (x)^{2}} d x=2 I \pi\left(\frac{5}{2} I+2 \frac{-768 I \sqrt{2}+1088 I}{768-544 \sqrt{2}}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{\cos (x)^{4}}{1+\sin (x)^{2}} d x=\frac{\pi(4 \sqrt{2}-5)}{(\sqrt{2}+1)(\sqrt{2}-1)}
$$

Info.
not_given

Comment.
no_comment

1.3 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{\sin (x)^{2}}{\frac{5}{4}-\cos (x)} d x
$$

Hint.
Type_I

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{4} \frac{I\left(z-\frac{1}{z}\right)^{2}}{\left(\frac{5}{4}-\frac{1}{2} z-\frac{1}{2} \frac{1}{z}\right) z}
$$

We find singularities

$$
\left[\{z=0\},\left\{z=\frac{1}{2}\right\},\{z=2\}\right]
$$

The singularity

$$
z=0
$$

is in our region and we will add the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=-\frac{5}{4} I
$$

The singularity

$$
z=\frac{1}{2}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{1}{2}, \mathrm{f}(z)\right)=\frac{3}{4} I
$$

The singularity

$$
z=2
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\pi
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{\sin (x)^{2}}{\frac{5}{4}-\cos (x)} d x=\pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{\sin (x)^{2}}{\frac{5}{4}-\cos (x)} d x=\pi
$$

Info.

> not_given

Comment.
no_comment

1.4 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{1}{\sin (x)^{2}+4 \cos (x)^{2}} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I}{\left(-\frac{1}{4}\left(z-\frac{1}{z}\right)^{2}+4\left(\frac{1}{2} z+\frac{1}{2} \frac{1}{z}\right)^{2}\right) z}
$$

We find singularities

$$
\left[\left\{z=-\frac{1}{3} I \sqrt{3}\right\},\left\{z=\frac{1}{3} I \sqrt{3}\right\},\{z=I \sqrt{3}\},\{z=-I \sqrt{3}\}\right]
$$

The singularity

$$
z=-\frac{1}{3} I \sqrt{3}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(-\frac{1}{3} I \sqrt{3}, \mathrm{f}(z)\right)=-\frac{1}{4} I
$$

The singularity

$$
z=\frac{1}{3} I \sqrt{3}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{1}{3} I \sqrt{3}, \mathrm{f}(z)\right)=-\frac{1}{4} I
$$

The singularity

$$
z=I \sqrt{3}
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=-I \sqrt{3}
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\pi
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{1}{\sin (x)^{2}+4 \cos (x)^{2}} d x=\pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{1}{\sin (x)^{2}+4 \cos (x)^{2}} d x=\pi
$$

Info.
not_given

Comment.
no_comment

1.5 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{1}{13+12 \sin (x)} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I}{\left(13-6 I\left(z-\frac{1}{z}\right)\right) z}
$$

We find singularities

$$
\left[\left\{z=-\frac{2}{3} I\right\},\left\{z=-\frac{3}{2} I\right\}\right]
$$

The singularity

$$
z=-\frac{2}{3} I
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(-\frac{2}{3} I, \mathrm{f}(z)\right)=-\frac{1}{5} I
$$

The singularity

$$
z=-\frac{3}{2} I
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{2}{5} \pi
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{1}{13+12 \sin (x)} d x=\frac{2}{5} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{1}{13+12 \sin (x)} d x=\frac{2}{5} \pi
$$

Info.
not_given

Comment.
no_comment

1.6 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{1}{2+\cos (x)} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I}{\left(2+\frac{1}{2} z+\frac{1}{2} \frac{1}{z}\right) z}
$$

We find singularities

$$
[\{z=-2+\sqrt{3}\},\{z=-2-\sqrt{3}\}]
$$

The singularity

$$
z=-2+\sqrt{3}
$$

is in our region and we will add the following residue

$$
\operatorname{res}(-2+\sqrt{3}, \mathrm{f}(z))=-\frac{1}{3} I \sqrt{3}
$$

The singularity

$$
z=-2-\sqrt{3}
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{2}{3} \pi \sqrt{3}
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{1}{2+\cos (x)} d x=\frac{2}{3} \pi \sqrt{3}
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{1}{2+\cos (x)} d x=\frac{2}{3} \pi \sqrt{3}
$$

Info.
not_given

Comment.

1.7 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{1}{(2+\cos (x))^{2}} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I}{\left(2+\frac{1}{2} z+\frac{1}{2} \frac{1}{z}\right)^{2} z}
$$

We find singularities

$$
[\{z=-2+\sqrt{3}\},\{z=-2-\sqrt{3}\}]
$$

The singularity

$$
z=-2+\sqrt{3}
$$

is in our region and we will add the following residue

$$
\operatorname{res}(-2+\sqrt{3}, \mathrm{f}(z))=-\frac{1}{3} I+\frac{1}{3}\left(-\frac{2}{3} I+\frac{1}{3} I \sqrt{3}\right) \sqrt{3}
$$

The singularity

$$
z=-2-\sqrt{3}
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(-\frac{1}{3} I+\frac{1}{3}\left(-\frac{2}{3} I+\frac{1}{3} I \sqrt{3}\right) \sqrt{3}\right)
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{1}{(2+\cos (x))^{2}} d x=2 I \pi\left(-\frac{1}{3} I+\frac{1}{3}\left(-\frac{2}{3} I+\frac{1}{3} I \sqrt{3}\right) \sqrt{3}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{1}{(2+\cos (x))^{2}} d x=\frac{4}{9} \pi \sqrt{3}
$$

Info.
not_given

Comment.

1.8 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{1}{2+\sin (x)} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I}{\left(2-\frac{1}{2} I\left(z-\frac{1}{z}\right)\right) z}
$$

We find singularities

$$
[\{z=-2 I+I \sqrt{3}\},\{z=-2 I-I \sqrt{3}\}]
$$

The singularity

$$
z=-2 I+I \sqrt{3}
$$

is in our region and we will add the following residue

$$
\operatorname{res}(-2 I+I \sqrt{3}, \mathrm{f}(z))=-\frac{1}{3} I \sqrt{3}
$$

The singularity

$$
z=-2 I-I \sqrt{3}
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{2}{3} \pi \sqrt{3}
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{1}{2+\sin (x)} d x=\frac{2}{3} \pi \sqrt{3}
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{1}{2+\sin (x)} d x=\frac{2}{3} \pi \sqrt{3}
$$

Info.
not_given

Comment.

1.9 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{1}{5+4 \cos (x)} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I}{\left(5+2 z+2 \frac{1}{z}\right) z}
$$

We find singularities

$$
\left[\{z=-2\},\left\{z=\frac{-1}{2}\right\}\right]
$$

The singularity

$$
z=-2
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=\frac{-1}{2}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{-1}{2}, \mathrm{f}(z)\right)=-\frac{1}{3} I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{2}{3} \pi
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{1}{5+4 \cos (x)} d x=\frac{2}{3} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{1}{5+4 \cos (x)} d x=\frac{2}{3} \pi
$$

Info.
not_given

Comment.

1.10 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{1}{5+4 \sin (x)} d x
$$

Hint.

Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I}{\left(5-2 I\left(z-\frac{1}{z}\right)\right) z}
$$

We find singularities

$$
\left[\{z=-2 I\},\left\{z=-\frac{1}{2} I\right\}\right]
$$

The singularity

$$
z=-2 I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=-\frac{1}{2} I
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(-\frac{1}{2} I, \mathrm{f}(z)\right)=-\frac{1}{3} I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{2}{3} \pi
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{1}{5+4 \sin (x)} d x=\frac{2}{3} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{1}{5+4 \sin (x)} d x=\frac{2}{3} \pi
$$

Info.
not_given

Comment.

1.11 Problem.

Using the Residue theorem evaluate

$$
\int_{0}^{2 \pi} \frac{\cos (x)}{\frac{5}{4}-\cos (x)} d x
$$

Hint.
Type_I

Solution.
We denote

$$
\mathrm{f}(z)=-\frac{I\left(\frac{1}{2} z+\frac{1}{2} \frac{1}{z}\right)}{\left(\frac{5}{4}-\frac{1}{2} z-\frac{1}{2} \frac{1}{z}\right) z}
$$

We find singularities

$$
\left[\{z=0\},\left\{z=\frac{1}{2}\right\},\{z=2\}\right]
$$

The singularity

$$
z=0
$$

is in our region and we will add the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=I
$$

The singularity

$$
z=\frac{1}{2}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{1}{2}, \mathrm{f}(z)\right)=-\frac{5}{3} I
$$

The singularity

$$
z=2
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{4}{3} \pi
$$

The solution is

$$
\int_{0}^{2 \pi} \frac{\cos (x)}{\frac{5}{4}-\cos (x)} d x=\frac{4}{3} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{0}^{2 \pi} \frac{\cos (x)}{\frac{5}{4}-\cos (x)} d x=\frac{4}{3} \pi
$$

Info.
not_given

Comment.
no_comment

1.12 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}+1}{x^{4}+1} d x
$$

Hint.
Type_II
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}+1}{z^{4}+1}
$$

We find singularities
$\left[\left\{z=-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right\},\left\{z=\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right\},\left\{z=-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right\},\left\{z=\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right\}\right]$
The singularity

$$
z=-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}, \mathrm{f}(z)\right)=\frac{1+I}{2 I \sqrt{2}-2 \sqrt{2}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}, \mathrm{f}(z)\right)=\frac{1-I}{2 I \sqrt{2}+2 \sqrt{2}}
$$

The singularity

$$
z=\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{1+I}{2 I \sqrt{2}-2 \sqrt{2}}+\frac{1-I}{2 I \sqrt{2}+2 \sqrt{2}}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x^{2}+1}{x^{4}+1} d x=2 I \pi\left(\frac{1+I}{2 I \sqrt{2}-2 \sqrt{2}}+\frac{1-I}{2 I \sqrt{2}+2 \sqrt{2}}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x^{2}+1}{x^{4}+1} d x=\sqrt{2} \pi
$$

Info.
not_given
Comment.
no_comment

1.13 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}-1}{\left(x^{2}+1\right)^{2}} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}-1}{\left(z^{2}+1\right)^{2}}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=0
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=0
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x^{2}-1}{\left(x^{2}+1\right)^{2}} d x=0
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x^{2}-1}{\left(x^{2}+1\right)^{2}} d x=0
$$

Info.
not_given

Comment.

1.14 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}-z+2}{z^{4}+10 z^{2}+9}
$$

We find singularities

$$
[\{z=3 I\},\{z=-3 I\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=3 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(3 I, \mathrm{f}(z))=\frac{1}{16}-\frac{7}{48} I
$$

The singularity

$$
z=-3 I
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{16}-\frac{1}{16} I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{5}{12} \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x=\frac{5}{12} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x=\frac{5}{12} \pi
$$

Info.
not_given
Comment.
no_comment

1.15 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)^{2}} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)^{2}}
$$

We find singularities

$$
[\{z=2 I\},\{z=-I\},\{z=I\},\{z=-2 I\}]
$$

The singularity

$$
z=2 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(2 I, \mathrm{f}(z))=\frac{11}{288} I
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{18} I
$$

The singularity

$$
z=-2 I
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{5}{144} \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)^{2}} d x=\frac{5}{144} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)^{2}} d x=\frac{5}{144} \pi
$$

Info.
not_given

Comment.
no_comment

1.16 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+9\right)}
$$

We find singularities

$$
[\{z=3 I\},\{z=-3 I\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=3 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(3 I, \mathrm{f}(z))=\frac{1}{48} I
$$

The singularity

$$
z=-3 I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{16} I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{1}{12} \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x=\frac{1}{12} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x=\frac{1}{12} \pi
$$

Info.
not_given

Comment.
no_comment

1.17 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{1}{(x-I)(x-2 I)} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{(z-I)(z-2 I)}
$$

We find singularities

$$
[\{z=2 I\},\{z=I\}]
$$

The singularity

$$
z=2 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(2 I, \mathrm{f}(z))=-I
$$

The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=0
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{1}{(x-I)(x-2 I)} d x=0
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{1}{(x-I)(x-2 I)} d x=0
$$

Info.
not_given

Comment.

1.18 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{1}{(x-I)(x-2 I)(x+3 I)} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{(z-I)(z-2 I)(z+3 I)}
$$

We find singularities

$$
[\{z=2 I\},\{z=-3 I\},\{z=I\}]
$$

The singularity

$$
z=2 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(2 I, \mathrm{f}(z))=\frac{-1}{5}
$$

The singularity

$$
z=-3 I
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=\frac{1}{4}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{1}{10} I \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{1}{(x-I)(x-2 I)(x+3 I)} d x=\frac{1}{10} I \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{1}{(x-I)(x-2 I)(x+3 I)} d x=\frac{1}{10} I \pi
$$

Info.

> not_given

Comment.
no_comment

1.19 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x
$$

Hint.
Type_II
Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z^{2}+1}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{2} I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\pi
$$

Info.
not_given

Comment.

1.20 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{1}{x^{3}+1} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z^{3}+1}
$$

We find singularities

$$
\left[\{z=-1\},\left\{z=\frac{1}{2}-\frac{1}{2} I \sqrt{3}\right\},\left\{z=\frac{1}{2}+\frac{1}{2} I \sqrt{3}\right\}\right]
$$

The singularity

$$
z=-1
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(-1, \mathrm{f}(z))=\frac{1}{3}
$$

The singularity

$$
z=\frac{1}{2}-\frac{1}{2} I \sqrt{3}
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=\frac{1}{2}+\frac{1}{2} I \sqrt{3}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{1}{2}+\frac{1}{2} I \sqrt{3}, \mathrm{f}(z)\right)=2 \frac{1}{3 I \sqrt{3}-3}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{1}{6}+2 \frac{1}{3 I \sqrt{3}-3}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{1}{x^{3}+1} d x=2 I \pi\left(\frac{1}{6}+2 \frac{1}{3 I \sqrt{3}-3}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{1}{x^{3}+1} d x=\int_{-\infty}^{\infty} \frac{1}{x^{3}+1} d x
$$

Info.

> not_given

Comment.
no_comment

1.21 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{1}{x^{6}+1} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z^{6}+1}
$$

We find singularities

$$
\begin{aligned}
& {\left[\{z=-I\},\{z=I\},\left\{z=\frac{1}{2} \sqrt{2+2 I \sqrt{3}}\right\},\left\{z=-\frac{1}{2} \sqrt{2+2 I \sqrt{3}}\right\},\left\{z=\frac{1}{2} \sqrt{2-2 I \sqrt{3}}\right\}\right.} \\
& \left.\quad\left\{z=-\frac{1}{2} \sqrt{2-2 I \sqrt{3}}\right\}\right]
\end{aligned}
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{6} I
$$

The singularity

$$
z=\frac{1}{2} \sqrt{2+2 I \sqrt{3}}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{1}{2} \sqrt{2+2 I \sqrt{3}}, \mathrm{f}(z)\right)=\frac{16}{3} \frac{1}{(2+2 I \sqrt{3})^{(5 / 2)}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2+2 I \sqrt{3}}
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=\frac{1}{2} \sqrt{2-2 I \sqrt{3}}
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=-\frac{1}{2} \sqrt{2-2 I \sqrt{3}}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(-\frac{1}{2} \sqrt{2-2 I \sqrt{3}}, \mathrm{f}(z)\right)=-\frac{16}{3} \frac{1}{(2-2 I \sqrt{3})^{(5 / 2)}}
$$

Our sum is
$2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(-\frac{1}{6} I+\frac{16}{3} \frac{1}{(2+2 I \sqrt{3})^{(5 / 2)}}-\frac{16}{3} \frac{1}{(2-2 I \sqrt{3})^{(5 / 2)}}\right)$
The solution is

$$
\int_{-\infty}^{\infty} \frac{1}{x^{6}+1} d x=2 I \pi\left(-\frac{1}{6} I+\frac{16}{3} \frac{1}{(2+2 I \sqrt{3})^{(5 / 2)}}-\frac{16}{3} \frac{1}{(2-2 I \sqrt{3})^{(5 / 2)}}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{1}{x^{6}+1} d x=\frac{2}{3} \pi
$$

Info.
not_given

Comment.

1.22 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+4 x+13\right)^{2}} d x
$$

Hint.
Type_II
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z}{\left(z^{2}+4 z+13\right)^{2}}
$$

We find singularities

$$
[\{z=-2+3 I\},\{z=-2-3 I\}]
$$

The singularity

$$
z=-2+3 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(-2+3 I, \mathrm{f}(z))=\frac{1}{54} I
$$

The singularity

$$
z=-2-3 I
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=-\frac{1}{27} \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+4 x+13\right)^{2}} d x=-\frac{1}{27} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+4 x+13\right)^{2}} d x=-\frac{1}{27} \pi
$$

Info.
not_given

Comment.

1.23 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+9\right)}
$$

We find singularities

$$
[\{z=3 I\},\{z=-3 I\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=3 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(3 I, \mathrm{f}(z))=-\frac{3}{16} I
$$

The singularity

$$
z=-3 I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=\frac{1}{16} I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{1}{4} \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x=\frac{1}{4} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x=\frac{1}{4} \pi
$$

Info.
not_given

Comment.

> no_comment

1.24 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{3}} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}}{\left(z^{2}+1\right)^{3}}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{16} I
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{1}{8} \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{3}} d x=\frac{1}{8} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{3}} d x=\frac{1}{8} \pi
$$

Info.
not_given

Comment.

1.25 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+4\right)^{2}} d x
$$

Hint.
Type_II

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}}{\left(z^{2}+4\right)^{2}}
$$

We find singularities

$$
[\{z=2 I\},\{z=-2 I\}]
$$

The singularity

$$
z=2 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(2 I, \mathrm{f}(z))=-\frac{1}{8} I
$$

The singularity

$$
z=-2 I
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{1}{4} \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+4\right)^{2}} d x=\frac{1}{4} \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+4\right)^{2}} d x=\frac{1}{4} \pi
$$

Info.
not_given

Comment.

1.26 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{\left(x^{3}+5 x\right) e^{(I x)}}{x^{4}+10 x^{2}+9} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{\left(z^{3}+5 z\right) e^{(I z)}}{z^{4}+10 z^{2}+9}
$$

We find singularities

$$
[\{z=3 I\},\{z=-3 I\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=3 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(3 I, \mathrm{f}(z))=\frac{1}{4} e^{(-3)}
$$

The singularity

$$
z=-3 I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=\frac{1}{4} e^{(-1)}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{1}{4} e^{(-3)}+\frac{1}{4} e^{(-1)}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{\left(x^{3}+5 x\right) e^{(I x)}}{x^{4}+10 x^{2}+9} d x=2 I \pi\left(\frac{1}{4} e^{(-3)}+\frac{1}{4} e^{(-1)}\right)
$$

We can try to solve it using real calculus and obtain the result
$\int_{-\infty}^{\infty} \frac{\left(x^{3}+5 x\right) e^{(I x)}}{x^{4}+10 x^{2}+9} d x=\frac{1}{2} I \pi \cosh (1)+\frac{1}{2} I \pi \cosh (3)-\frac{1}{2} I \pi \sinh (3)-\frac{1}{2} I \pi \sinh (1)$ Info.
not_given

Comment.
no_comment

1.27 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}\left(x^{2}-1\right)}{x\left(x^{2}+1\right)} d x
$$

Hint.

Type_III

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}\left(z^{2}-1\right)}{z\left(z^{2}+1\right)}
$$

We find singularities

$$
[\{z=0\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=0
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=-1
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=e^{(-1)}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(-\frac{1}{2}+e^{(-1)}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}\left(x^{2}-1\right)}{x\left(x^{2}+1\right)} d x=2 I \pi\left(-\frac{1}{2}+e^{(-1)}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}\left(x^{2}-1\right)}{x\left(x^{2}+1\right)} d x=\int_{-\infty}^{\infty} \frac{(\cos (x)+I \sin (x))\left(x^{2}-1\right)}{x\left(x^{2}+1\right)} d x
$$

Info.
not_given
Comment.
no_comment

1.28 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{\left(x^{2}+4\right)(x-1)} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{\left(z^{2}+4\right)(z-1)}
$$

We find singularities

$$
[\{z=2 I\},\{z=-2 I\},\{z=1\}]
$$

The singularity

$$
z=2 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(2 I, \mathrm{f}(z))=\left(-\frac{1}{10}+\frac{1}{20} I\right) e^{(-2)}
$$

The singularity

$$
z=-2 I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=1
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(1, \mathrm{f}(z))=\frac{1}{5} e^{I}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\left(-\frac{1}{10}+\frac{1}{20} I\right) e^{(-2)}+\frac{1}{10} e^{I}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{\left(x^{2}+4\right)(x-1)} d x=2 I \pi\left(\left(-\frac{1}{10}+\frac{1}{20} I\right) e^{(-2)}+\frac{1}{10} e^{I}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{\left(x^{2}+4\right)(x-1)} d x=\int_{-\infty}^{\infty} \frac{\cos (x)+I \sin (x)}{\left(x^{2}+4\right)(x-1)} d x
$$

Info.
not_given

Comment.
no_comment

1.29 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}+1\right)} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z\left(z^{2}+1\right)}
$$

We find singularities

$$
[\{z=0\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=0
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=1
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{2} e^{(-1)}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{1}{2}-\frac{1}{2} e^{(-1)}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}+1\right)} d x=2 I \pi\left(\frac{1}{2}-\frac{1}{2} e^{(-1)}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}+1\right)} d x=\int_{-\infty}^{\infty} \frac{\cos (x)+I \sin (x)}{x\left(x^{2}+1\right)} d x
$$

Info.
not_given

Comment.
no_comment

1.30 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}+9\right)^{2}} d x
$$

Hint.

Type_III

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z\left(z^{2}+9\right)^{2}}
$$

We find singularities

$$
[\{z=0\},\{z=3 I\},\{z=-3 I\}]
$$

The singularity

$$
z=0
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=\frac{1}{81}
$$

The singularity

$$
z=3 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(3 I, \mathrm{f}(z))=-\frac{5}{324} e^{(-3)}
$$

The singularity

$$
z=-3 I
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{1}{162}-\frac{5}{324} e^{(-3)}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}+9\right)^{2}} d x=2 I \pi\left(\frac{1}{162}-\frac{5}{324} e^{(-3)}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}+9\right)^{2}} d x=\int_{-\infty}^{\infty} \frac{\cos (x)+I \sin (x)}{x\left(x^{2}+9\right)^{2}} d x
$$

Info.
not_given
Comment.
no_comment

1.31 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}-2 x+2\right)} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z\left(z^{2}-2 z+2\right)}
$$

We find singularities

$$
[\{z=0\},\{z=1+I\},\{z=1-I\}]
$$

The singularity

$$
z=0
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=\frac{1}{2}
$$

The singularity

$$
z=1+I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(1+I, \mathrm{f}(z))=\left(-\frac{1}{4}-\frac{1}{4} I\right) e^{I} e^{(-1)}
$$

The singularity

$$
z=1-I
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{1}{4}+\left(-\frac{1}{4}-\frac{1}{4} I\right) e^{I} e^{(-1)}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}-2 x+2\right)} d x=2 I \pi\left(\frac{1}{4}+\left(-\frac{1}{4}-\frac{1}{4} I\right) e^{I} e^{(-1)}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x\left(x^{2}-2 x+2\right)} d x=\int_{-\infty}^{\infty} \frac{\cos (x)+I \sin (x)}{x\left(x^{2}-2 x+2\right)} d x
$$

Info.
not_given

Comment.
no_comment

1.32 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}+1} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{2}+1}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{2} I e^{(-1)}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\pi e^{(-1)}
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}+1} d x=\pi e^{(-1)}
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}+1} d x=-\pi \sinh (1)+\pi \cosh (1)
$$

Info.
not_given

Comment.
no_comment

1.33 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}+4 x+20} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{2}+4 z+20}
$$

We find singularities

$$
[\{z=-2-4 I\},\{z=-2+4 I\}]
$$

The singularity

$$
z=-2-4 I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=-2+4 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(-2+4 I, \mathrm{f}(z))=-\frac{1}{8} \frac{I e^{(-4)}}{\left(e^{I}\right)^{2}}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{1}{4} \frac{\pi e^{(-4)}}{\left(e^{I}\right)^{2}}
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}+4 x+20} d x=\frac{1}{4} \frac{\pi e^{(-4)}}{\left(e^{I}\right)^{2}}
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}+4 x+20} d x=-\frac{1}{4} I \pi \sin (2-4 I)+\frac{1}{4} \pi \cos (2-4 I)
$$

Info.
not_given

Comment.

1.34 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}-5 x+6} d x
$$

Hint.
Type_III

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{2}-5 z+6}
$$

We find singularities

$$
[\{z=2\},\{z=3\}]
$$

The singularity

$$
z=2
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(2, \mathrm{f}(z))=-\left(e^{I}\right)^{2}
$$

The singularity

$$
z=3
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(3, \mathrm{f}(z))=\left(e^{I}\right)^{3}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(-\frac{1}{2}\left(e^{I}\right)^{2}+\frac{1}{2}\left(e^{I}\right)^{3}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}-5 x+6} d x=2 I \pi\left(-\frac{1}{2}\left(e^{I}\right)^{2}+\frac{1}{2}\left(e^{I}\right)^{3}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}-5 x+6} d x=\int_{-\infty}^{\infty} \frac{\cos (x)+I \sin (x)}{x^{2}-5 x+6} d x
$$

Info.
not_given

Comment.

1.35 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{3}+1} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{3}+1}
$$

We find singularities

$$
\left[\{z=-1\},\left\{z=\frac{1}{2}-\frac{1}{2} I \sqrt{3}\right\},\left\{z=\frac{1}{2}+\frac{1}{2} I \sqrt{3}\right\}\right]
$$

The singularity

$$
z=-1
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(-1, \mathrm{f}(z))=\frac{1}{3} \frac{1}{e^{I}}
$$

The singularity

$$
z=\frac{1}{2}-\frac{1}{2} I \sqrt{3}
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=\frac{1}{2}+\frac{1}{2} I \sqrt{3}
$$

is in our region and we will add the following residue

$$
\operatorname{res}\left(\frac{1}{2}+\frac{1}{2} I \sqrt{3}, \mathrm{f}(z)\right)=2 \frac{(-1)^{\left(1 / 2 \frac{1}{\pi}\right)}}{3 I \sqrt{e^{(\sqrt{3})}} \sqrt{3}-3 \sqrt{e^{(\sqrt{3})}}}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{1}{6} \frac{1}{e^{I}}+2 \frac{(-1)^{\left(1 / 2 \frac{1}{\pi}\right)}}{3 I \sqrt{e^{(\sqrt{3})}} \sqrt{3}-3 \sqrt{e^{(\sqrt{3})}}}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{3}+1} d x=2 I \pi\left(\frac{1}{6} \frac{1}{e^{I}}+2 \frac{(-1)^{\left(1 / 2 \frac{1}{\pi}\right)}}{3 I \sqrt{e^{(\sqrt{3})}} \sqrt{3}-3 \sqrt{e^{(\sqrt{3})}}}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{3}+1} d x=\int_{-\infty}^{\infty} \frac{\cos (x)+I \sin (x)}{x^{3}+1} d x
$$

Info.
not_given

Comment.
no_comment

1.36 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{4}-1} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{4}-1}
$$

We find singularities

$$
[\{z=-1\},\{z=-I\},\{z=I\},\{z=1\}]
$$

The singularity

$$
z=-1
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(-1, \mathrm{f}(z))=-\frac{1}{4} \frac{1}{e^{I}}
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=\frac{1}{4} I e^{(-1)}
$$

The singularity

$$
z=1
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(1, \mathrm{f}(z))=\frac{1}{4} e^{I}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(-\frac{1}{8} \frac{1}{e^{I}}+\frac{1}{4} I e^{(-1)}+\frac{1}{8} e^{I}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{4}-1} d x=2 I \pi\left(-\frac{1}{8} \frac{1}{e^{I}}+\frac{1}{4} I e^{(-1)}+\frac{1}{8} e^{I}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{4}-1} d x=\int_{-\infty}^{\infty} \frac{\cos (x)+I \sin (x)}{x^{4}-1} d x
$$

Info.
not_given

Comment.
no_comment

1.37 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x} d x
$$

Hint.

> Type_III

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z}
$$

We find singularities

$$
[\{z=0\}]
$$

The singularity

$$
z=0
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(0, \mathrm{f}(z))=1
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=I \pi
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x} d x=I \pi
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x} d x=\int_{-\infty}^{\infty} \frac{\cos (x)+I \sin (x)}{x} d x
$$

Info.
not_given

Comment.
no_comment

1.38 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{1-x^{4}} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{1-z^{4}}
$$

We find singularities

$$
[\{z=-1\},\{z=-I\},\{z=I\},\{z=1\}]
$$

The singularity

$$
z=-1
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(-1, \mathrm{f}(z))=-\frac{1}{4} \frac{1}{e^{I}}
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=\frac{1}{4} e^{(-1)}
$$

The singularity

$$
z=1
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(1, \mathrm{f}(z))=-\frac{1}{4} e^{I}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(-\frac{1}{8} \frac{1}{e^{I}}+\frac{1}{4} e^{(-1)}-\frac{1}{8} e^{I}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{1-x^{4}} d x=2 I \pi\left(-\frac{1}{8} \frac{1}{e^{I}}+\frac{1}{4} e^{(-1)}-\frac{1}{8} e^{I}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{1-x^{4}} d x=\int_{-\infty}^{\infty}-\frac{x(\cos (x)+I \sin (x))}{-1+x^{4}} d x
$$

Info.
not_given

Comment.

1.39 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}+4 x+20} d x
$$

Hint.

Type_III

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{z^{2}+4 z+20}
$$

We find singularities

$$
[\{z=-2-4 I\},\{z=-2+4 I\}]
$$

The singularity

$$
z=-2-4 I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=-2+4 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(-2+4 I, \mathrm{f}(z))=-\frac{1}{8} \frac{I\left(4 I e^{(-4)}-2 e^{(-4)}\right)}{\left(e^{I}\right)^{2}}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{1}{4} \frac{\pi\left(4 I e^{(-4)}-2 e^{(-4)}\right)}{\left(e^{I}\right)^{2}}
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}+4 x+20} d x=\frac{1}{4} \frac{\pi\left(4 I e^{(-4)}-2 e^{(-4)}\right)}{\left(e^{I}\right)^{2}}
$$

We can try to solve it using real calculus and obtain the result

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}+4 x+20} d x= \\
& \quad \pi \sin (2-4 I)+I \pi \cos (2-4 I)+\frac{1}{2} I \pi \sin (2-4 I)-\frac{1}{2} \pi \cos (2-4 I)
\end{aligned}
$$

Info.
not_given
Comment.
no_comment

1.40 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}+9} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{z^{2}+9}
$$

We find singularities

$$
[\{z=3 I\},\{z=-3 I\}]
$$

The singularity

$$
z=3 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(3 I, \mathrm{f}(z))=\frac{1}{2} e^{(-3)}
$$

The singularity

$$
z=-3 I
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=I \pi e^{(-3)}
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}+9} d x=I \pi e^{(-3)}
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}+9} d x=I \pi \cosh (3)-I \pi \sinh (3)
$$

Info.
not_given

Comment.

1.41 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}-2 x+10} d x
$$

Hint.
Type_III
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{z^{2}-2 z+10}
$$

We find singularities

$$
[\{z=1-3 I\},\{z=1+3 I\}]
$$

The singularity

$$
z=1-3 I
$$

will be skipped because the singularity is not in our region. The singularity

$$
z=1+3 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(1+3 I, \mathrm{f}(z))=-\frac{1}{6} I\left(3 I e^{I} e^{(-3)}+e^{I} e^{(-3)}\right)
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=\frac{1}{3} \pi\left(3 I e^{I} e^{(-3)}+e^{I} e^{(-3)}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}-2 x+10} d x=\frac{1}{3} \pi\left(3 I e^{I} e^{(-3)}+e^{I} e^{(-3)}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}-2 x+10} d x= \\
& \quad-\pi \sin (1+3 I)+I \pi \cos (1+3 I)+\frac{1}{3} I \pi \sin (1+3 I)+\frac{1}{3} \pi \cos (1+3 I)
\end{aligned}
$$

Info.
not_given

Comment.
no_comment

1.42 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}-5 x+6} d x
$$

Hint.
Type_III

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{z^{2}-5 z+6}
$$

We find singularities

$$
[\{z=2\},\{z=3\}]
$$

The singularity

$$
z=2
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(2, \mathrm{f}(z))=-2\left(e^{I}\right)^{2}
$$

The singularity

$$
z=3
$$

is on the real line and we will add one half of the following residue

$$
\operatorname{res}(3, \mathrm{f}(z))=3\left(e^{I}\right)^{3}
$$

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(-\left(e^{I}\right)^{2}+\frac{3}{2}\left(e^{I}\right)^{3}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}-5 x+6} d x=2 I \pi\left(-\left(e^{I}\right)^{2}+\frac{3}{2}\left(e^{I}\right)^{3}\right)
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{x e^{(I x)}}{x^{2}-5 x+6} d x=\int_{-\infty}^{\infty} \frac{x(\cos (x)+I \sin (x))}{x^{2}-5 x+6} d x
$$

Info.
not_given

Comment.

1.43 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}} d x
$$

Hint.

> Type_III

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{2}}
$$

We find singularities

$$
[\{z=0\}]
$$

The singularity

$$
z=0
$$

is on the real line and is not a simple pole, we cannot count the integral with the residue theorem ...

Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi \infty
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}} d x=2 I \pi \infty
$$

We can try to solve it using real calculus and obtain the result

$$
\int_{-\infty}^{\infty} \frac{e^{(I x)}}{x^{2}} d x=\infty
$$

Info.
not_given

Comment.

> no_comment

1.44 Problem.

Using the Residue theorem evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{3} e^{(I x)}}{x^{4}+5 x^{2}+4} d x
$$

Hint.

Type_III

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{3} e^{(I z)}}{z^{4}+5 z^{2}+4}
$$

We find singularities

$$
[\{z=2 I\},\{z=-I\},\{z=I\},\{z=-2 I\}]
$$

The singularity

$$
z=2 I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(2 I, \mathrm{f}(z))=\frac{2}{3} e^{(-2)}
$$

The singularity

$$
z=-I
$$

will be skipped because the singularity is not in our region.
The singularity

$$
z=I
$$

is in our region and we will add the following residue

$$
\operatorname{res}(I, \mathrm{f}(z))=-\frac{1}{6} e^{(-1)}
$$

The singularity

$$
z=-2 I
$$

will be skipped because the singularity is not in our region.
Our sum is

$$
2 I \pi\left(\sum \operatorname{res}(z, \mathrm{f}(z))\right)=2 I \pi\left(\frac{2}{3} e^{(-2)}-\frac{1}{6} e^{(-1)}\right)
$$

The solution is

$$
\int_{-\infty}^{\infty} \frac{x^{3} e^{(I x)}}{x^{4}+5 x^{2}+4} d x=2 I \pi\left(\frac{2}{3} e^{(-2)}-\frac{1}{6} e^{(-1)}\right)
$$

We can try to solve it using real calculus and obtain the result
$\int_{-\infty}^{\infty} \frac{x^{3} e^{(I x)}}{x^{4}+5 x^{2}+4} d x=-\frac{1}{3} I \pi \cosh (1)+\frac{4}{3} I \pi \cosh (2)-\frac{4}{3} I \pi \sinh (2)+\frac{1}{3} I \pi \sinh (1)$
Info.
not_given

Comment.

2 Zero Sum theorem for residues problems

We recall the definition:
Notation. For a function f holomorphic on some neighbourhood of infinity we define

$$
\operatorname{res}(f, \infty)=\operatorname{res}\left(\frac{-1}{z^{2}} \cdot f\left(\frac{1}{z}\right), 0\right) .
$$

We will solve several problems using the following theorem:
Theorem. (Zero Sum theorem for residues) For a function f holomorphic in the extended complex plane $\mathbb{C} \cup\{\infty\}$ with at most finitely many exceptions the sum of residues is zero, i.e.

$$
\sum_{w \in \mathbb{C} \cup\{\infty\}} \operatorname{res}(f, w)=0 .
$$

Notation.(Example $f(z)=1 / z)$ Projecting on the Riemann sphere we observe the north pole on globe (i.e. ∞) with the residue -1 and at the south pole (the origin) with residue 1 . Green is the zero level on the Riemann sphere while the blue gradually turning red is the imaginary part of $\log z$ demonstrating that Zero Sum theorem holds for $1 / z$.

2.1 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}+1}{z^{4}+1}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}+1}{z^{4}+1}
$$

We find singularities
$\left[\left\{z=\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right\},\left\{z=-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right\},\left\{z=\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right\},\left\{z=-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right\}\right]$
The singularity

$$
z=\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right)=\frac{1+I}{2 I \sqrt{2}-2 \sqrt{2}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z),-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right)=\frac{-1-I}{2 I \sqrt{2}-2 \sqrt{2}}
$$

The singularity

$$
z=\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right)=\frac{-1+I}{2 I \sqrt{2}+2 \sqrt{2}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z),-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right)=\frac{1-I}{2 I \sqrt{2}+2 \sqrt{2}}
$$

At infinity we get the residue
$\operatorname{res}(\mathrm{f}(z), \infty)=\frac{1+I}{2 I \sqrt{2}-2 \sqrt{2}}+\frac{-1-I}{2 I \sqrt{2}-2 \sqrt{2}}+\frac{-1+I}{2 I \sqrt{2}+2 \sqrt{2}}+\frac{1-I}{2 I \sqrt{2}+2 \sqrt{2}}$
and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.2 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}-1}{\left(z^{2}+1\right)^{2}}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}-1}{\left(z^{2}+1\right)^{2}}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=0
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=0
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.3 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}-z+2}{z^{4}+10 z^{2}+9}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}-z+2}{z^{4}+10 z^{2}+9}
$$

We find singularities

$$
[\{z=-3 I\},\{z=-I\},\{z=I\},\{z=3 I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=\frac{1}{16}+\frac{7}{48} I
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=-\frac{1}{16}+\frac{1}{16} I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{16}-\frac{1}{16} I
$$

The singularity

$$
z=3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3 I)=\frac{1}{16}-\frac{7}{48} I
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.4 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)^{2}}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+4\right)^{2}}
$$

We find singularities

$$
[\{z=-I\},\{z=2 I\},\{z=-2 I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{18} I
$$

The singularity

$$
z=2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2 I)=\frac{11}{288} I
$$

The singularity

$$
z=-2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2 I)=-\frac{11}{288} I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{18} I
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.5 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{\left(z^{2}+1\right)\left(z^{2}+9\right)}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{\left(z^{2}+1\right)\left(z^{2}+9\right)}
$$

We find singularities

$$
[\{z=-3 I\},\{z=-I\},\{z=I\},\{z=3 I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=-\frac{1}{48} I
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{16} I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{16} I
$$

The singularity

$$
z=3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3 I)=\frac{1}{48} I
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.6 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{(z-I)(z-2 I)}
$$

Hint.

> no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{(z-I)(z-2 I)}
$$

We find singularities

$$
[\{z=2 I\},\{z=I\}]
$$

The singularity

$$
z=2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2 I)=-I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=I
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.7 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{(z-I)(z-2 I)(z+3 I)}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{(z-I)(z-2 I)(z+3 I)}
$$

We find singularities

$$
[\{z=-3 I\},\{z=2 I\},\{z=I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=\frac{-1}{20}
$$

The singularity

$$
z=2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2 I)=\frac{-1}{5}
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=\frac{1}{4}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.8 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z^{2}+1}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z^{2}+1}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{2} I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{2} I
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.9 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z^{3}+1}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z^{3}+1}
$$

We find singularities

$$
\left[\{z=-1\},\left\{z=\frac{1}{2}-\frac{1}{2} I \sqrt{3}\right\},\left\{z=\frac{1}{2}+\frac{1}{2} I \sqrt{3}\right\}\right]
$$

The singularity

$$
z=-1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-1)=\frac{1}{3}
$$

The singularity

$$
z=\frac{1}{2}-\frac{1}{2} I \sqrt{3}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2}-\frac{1}{2} I \sqrt{3}\right)=-2 \frac{1}{3 I \sqrt{3}+3}
$$

The singularity

$$
z=\frac{1}{2}+\frac{1}{2} I \sqrt{3}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2}+\frac{1}{2} I \sqrt{3}\right)=2 \frac{1}{3 I \sqrt{3}-3}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{3}+2 \frac{1}{3 I \sqrt{3}+3}-2 \frac{1}{3 I \sqrt{3}-3}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.10 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z^{6}+1}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z^{6}+1}
$$

We find singularities

$$
\begin{aligned}
& {\left[\{z=-I\},\left\{z=-\frac{1}{2} \sqrt{2-2 I \sqrt{3}}\right\},\left\{z=\frac{1}{2} \sqrt{2-2 I \sqrt{3}}\right\},\left\{z=-\frac{1}{2} \sqrt{2+2 I \sqrt{3}}\right\}\right.} \\
& \left.\quad\left\{z=\frac{1}{2} \sqrt{2+2 I \sqrt{3}}\right\},\{z=I\}\right]
\end{aligned}
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{6} I
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2-2 I \sqrt{3}}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z),-\frac{1}{2} \sqrt{2-2 I \sqrt{3}}\right)=-\frac{16}{3} \frac{1}{(2-2 I \sqrt{3})^{(5 / 2)}}
$$

The singularity

$$
z=\frac{1}{2} \sqrt{2-2 I \sqrt{3}}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2} \sqrt{2-2 I \sqrt{3}}\right)=\frac{16}{3} \frac{1}{(2-2 I \sqrt{3})^{(5 / 2)}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2+2 I \sqrt{3}}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z),-\frac{1}{2} \sqrt{2+2 I \sqrt{3}}\right)=-\frac{16}{3} \frac{1}{(2+2 I \sqrt{3})^{(5 / 2)}}
$$

The singularity

$$
z=\frac{1}{2} \sqrt{2+2 I \sqrt{3}}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2} \sqrt{2+2 I \sqrt{3}}\right)=\frac{16}{3} \frac{1}{(2+2 I \sqrt{3})^{(5 / 2)}}
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{6} I
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.11 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z}{\left(z^{2}+4 z+13\right)^{2}}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z}{\left(z^{2}+4 z+13\right)^{2}}
$$

We find singularities

$$
[\{z=-2-3 I\},\{z=-2+3 I\}]
$$

The singularity

$$
z=-2-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2-3 I)=-\frac{1}{54} I
$$

The singularity

$$
z=-2+3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2+3 I)=\frac{1}{54} I
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.12 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+9\right)}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+9\right)}
$$

We find singularities

$$
[\{z=-3 I\},\{z=-I\},\{z=I\},\{z=3 I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=\frac{3}{16} I
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=-\frac{1}{16} I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=\frac{1}{16} I
$$

The singularity

$$
z=3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3 I)=-\frac{3}{16} I
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.13 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}}{\left(z^{2}+1\right)^{3}}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}}{\left(z^{2}+1\right)^{3}}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{16} I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{16} I
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.14 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}}{\left(z^{2}+4\right)^{2}}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}}{\left(z^{2}+4\right)^{2}}
$$

We find singularities

$$
[\{z=2 I\},\{z=-2 I\}]
$$

The singularity

$$
z=2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2 I)=-\frac{1}{8} I
$$

The singularity

$$
z=-2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2 I)=\frac{1}{8} I
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.15 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{\left(z^{3}+5 z\right) e^{(I z)}}{z^{4}+10 z^{2}+9}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{\left(z^{3}+5 z\right) e^{(I z)}}{z^{4}+10 z^{2}+9}
$$

We find singularities

$$
[\{z=-3 I\},\{z=-I\},\{z=I\},\{z=3 I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=\frac{1}{4} e^{3}
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{4} e
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=\frac{1}{4} e^{(-1)}
$$

The singularity

$$
z=3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3 I)=\frac{1}{4} e^{(-3)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{4} e^{3}-\frac{1}{4} e-\frac{1}{4} e^{(-1)}-\frac{1}{4} e^{(-3)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

> no_comment

2.16 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}\left(z^{2}-1\right)}{z\left(z^{2}+1\right)}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}\left(z^{2}-1\right)}{z\left(z^{2}+1\right)}
$$

We find singularities

$$
[\{z=0\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=-1
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=e
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=e^{(-1)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=1-e-e^{(-1)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.17 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{\left(z^{2}+4\right)(z-1)}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{\left(z^{2}+4\right)(z-1)}
$$

We find singularities

$$
[\{z=1\},\{z=2 I\},\{z=-2 I\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=\frac{1}{5} e^{I}
$$

The singularity

$$
z=2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2 I)=\left(-\frac{1}{10}+\frac{1}{20} I\right) e^{(-2)}
$$

The singularity

$$
z=-2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2 I)=\left(-\frac{1}{10}-\frac{1}{20} I\right) e^{2}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{5} e^{I}+\left(\frac{1}{10}-\frac{1}{20} I\right) e^{(-2)}+\left(\frac{1}{10}+\frac{1}{20} I\right) e^{2}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.18 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z\left(z^{2}+1\right)}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z\left(z^{2}+1\right)}
$$

We find singularities

$$
[\{z=0\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=1
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=-\frac{1}{2} e
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{2} e^{(-1)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-1+\frac{1}{2} e+\frac{1}{2} e^{(-1)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.19 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z\left(z^{2}+9\right)^{2}}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z\left(z^{2}+9\right)^{2}}
$$

We find singularities

$$
[\{z=-3 I\},\{z=0\},\{z=3 I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=\frac{1}{324} e^{3}
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(f(z), 0)=\frac{1}{81}
$$

The singularity

$$
z=3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3 I)=-\frac{5}{324} e^{(-3)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{324} e^{3}-\frac{1}{81}+\frac{5}{324} e^{(-3)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.20 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z\left(z^{2}-2 z+2\right)}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z\left(z^{2}-2 z+2\right)}
$$

We find singularities

$$
[\{z=0\},\{z=1-I\},\{z=1+I\}]
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=\frac{1}{2}
$$

The singularity

$$
z=1-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1-I)=\left(-\frac{1}{4}+\frac{1}{4} I\right) e^{I} e
$$

The singularity

$$
z=1+I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1+I)=\left(-\frac{1}{4}-\frac{1}{4} I\right) e^{I} e^{(-1)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{2}+\left(\frac{1}{4}-\frac{1}{4} I\right) e^{I} e+\left(\frac{1}{4}+\frac{1}{4} I\right) e^{I} e^{(-1)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.21 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z^{2}+1}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{2}+1}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{2} I e
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{2} I e^{(-1)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{2} I e+\frac{1}{2} I e^{(-1)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.22 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z^{2}+4 z+20}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{2}+4 z+20}
$$

We find singularities

$$
[\{z=-2-4 I\},\{z=-2+4 I\}]
$$

The singularity

$$
z=-2-4 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2-4 I)=\frac{1}{8} \frac{I e^{4}}{\left(e^{I}\right)^{2}}
$$

The singularity

$$
z=-2+4 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2+4 I)=-\frac{1}{8} \frac{I e^{(-4)}}{\left(e^{I}\right)^{2}}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{8} \frac{I e^{4}}{\left(e^{I}\right)^{2}}+\frac{1}{8} \frac{I e^{(-4)}}{\left(e^{I}\right)^{2}}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.23 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z^{2}-5 z+6}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{2}-5 z+6}
$$

We find singularities

$$
[\{z=2\},\{z=3\}]
$$

The singularity

$$
z=2
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2)=-\left(e^{I}\right)^{2}
$$

The singularity

$$
z=3
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3)=\left(e^{I}\right)^{3}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=\left(e^{I}\right)^{2}-\left(e^{I}\right)^{3}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.24 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z^{3}+1}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{3}+1}
$$

We find singularities

$$
\left[\{z=-1\},\left\{z=\frac{1}{2}-\frac{1}{2} I \sqrt{3}\right\},\left\{z=\frac{1}{2}+\frac{1}{2} I \sqrt{3}\right\}\right]
$$

The singularity

$$
z=-1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-1)=\frac{1}{3} \frac{1}{e^{I}}
$$

The singularity

$$
z=\frac{1}{2}-\frac{1}{2} I \sqrt{3}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2}-\frac{1}{2} I \sqrt{3}\right)=-2 \frac{(-1)^{\left(1 / 2 \frac{1}{\pi}\right)} \sqrt{e^{(\sqrt{3})}}}{3 I \sqrt{3}+3}
$$

The singularity

$$
z=\frac{1}{2}+\frac{1}{2} I \sqrt{3}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2}+\frac{1}{2} I \sqrt{3}\right)=2 \frac{(-1)^{\left(1 / 2 \frac{1}{\pi}\right)}}{3 I \sqrt{e^{(\sqrt{3})}} \sqrt{3}-3 \sqrt{e^{(\sqrt{3})}}}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{3} \frac{1}{e^{I}}+2 \frac{(-1)^{\left(1 / 2 \frac{1}{\pi}\right)} \sqrt{e^{(\sqrt{3})}}}{3 I \sqrt{3}+3}-2 \frac{(-1)^{\left(1 / 2 \frac{1}{\pi}\right)}}{3 I \sqrt{e^{(\sqrt{3})}} \sqrt{3}-3 \sqrt{e^{(\sqrt{3})}}}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.25 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z^{4}-1}
$$

Hint. no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{4}-1}
$$

We find singularities

$$
[\{z=1\},\{z=-1\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=\frac{1}{4} e^{I}
$$

The singularity

$$
z=-1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-1)=-\frac{1}{4} \frac{1}{e^{I}}
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=-\frac{1}{4} I e
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=\frac{1}{4} I e^{(-1)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{4} e^{I}+\frac{1}{4} \frac{1}{e^{I}}+\frac{1}{4} I e-\frac{1}{4} I e^{(-1)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

> no_comment

2.26 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z}
$$

We find singularities

$$
[\{z=0\}]
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=1
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-1
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.27 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z e^{(I z)}}{1-z^{4}}
$$

Hint. no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{1-z^{4}}
$$

We find singularities

$$
[\{z=1\},\{z=-1\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=-\frac{1}{4} e^{I}
$$

The singularity

$$
z=-1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-1)=-\frac{1}{4} \frac{1}{e^{I}}
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{4} e
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=\frac{1}{4} e^{(-1)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=\frac{1}{4} e^{I}+\frac{1}{4} \frac{1}{e^{I}}-\frac{1}{4} e-\frac{1}{4} e^{(-1)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

> no_comment

2.28 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z e^{(I z)}}{z^{2}+4 z+20}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{z^{2}+4 z+20}
$$

We find singularities

$$
[\{z=-2-4 I\},\{z=-2+4 I\}]
$$

The singularity

$$
z=-2-4 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2-4 I)=-\frac{1}{8} \frac{I\left(4 I e^{4}+2 e^{4}\right)}{\left(e^{I}\right)^{2}}
$$

The singularity

$$
z=-2+4 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2+4 I)=-\frac{1}{8} \frac{I\left(4 I e^{(-4)}-2 e^{(-4)}\right)}{\left(e^{I}\right)^{2}}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=\frac{1}{8} \frac{I\left(4 I e^{4}+2 e^{4}\right)}{\left(e^{I}\right)^{2}}+\frac{1}{8} \frac{I\left(4 I e^{(-4)}-2 e^{(-4)}\right)}{\left(e^{I}\right)^{2}}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.29 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z e^{(I z)}}{z^{2}+9}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{z^{2}+9}
$$

We find singularities

$$
[\{z=-3 I\},\{z=3 I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=\frac{1}{2} e^{3}
$$

The singularity

$$
z=3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3 I)=\frac{1}{2} e^{(-3)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{2} e^{3}-\frac{1}{2} e^{(-3)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.30 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z e^{(I z)}}{z^{2}-2 z+10}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{z^{2}-2 z+10}
$$

We find singularities

$$
[\{z=1-3 I\},\{z=1+3 I\}]
$$

The singularity

$$
z=1-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1-3 I)=-\frac{1}{6} I\left(3 I e^{I} e^{3}-e^{I} e^{3}\right)
$$

The singularity

$$
z=1+3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1+3 I)=-\frac{1}{6} I\left(3 I e^{I} e^{(-3)}+e^{I} e^{(-3)}\right)
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=\frac{1}{6} I\left(3 I e^{I} e^{3}-e^{I} e^{3}\right)+\frac{1}{6} I\left(3 I e^{I} e^{(-3)}+e^{I} e^{(-3)}\right)
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.31 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z e^{(I z)}}{z^{2}-5 z+6}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z e^{(I z)}}{z^{2}-5 z+6}
$$

We find singularities

$$
[\{z=2\},\{z=3\}]
$$

The singularity

$$
z=2
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2)=-2\left(e^{I}\right)^{2}
$$

The singularity

$$
z=3
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3)=3\left(e^{I}\right)^{3}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=2\left(e^{I}\right)^{2}-3\left(e^{I}\right)^{3}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.32 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{(I z)}}{z^{2}}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{(I z)}}{z^{2}}
$$

We find singularities

$$
[\{z=0\}]
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=I
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-I
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.33 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{3} e^{(I z)}}{z^{4}+5 z^{2}+4}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{3} e^{(I z)}}{z^{4}+5 z^{2}+4}
$$

We find singularities

$$
[\{z=-I\},\{z=2 I\},\{z=-2 I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=-\frac{1}{6} e
$$

The singularity

$$
z=2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2 I)=\frac{2}{3} e^{(-2)}
$$

The singularity

$$
z=-2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2 I)=\frac{2}{3} e^{2}
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{6} e^{(-1)}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=\frac{1}{6} e-\frac{2}{3} e^{(-2)}-\frac{2}{3} e^{2}+\frac{1}{6} e^{(-1)}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.34 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}+1}{e^{z}}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}+1}{e^{z}}
$$

We find singularities

$$
[\{z=-\infty\}]
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.35 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}+z-1}{z^{2}(z-1)}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}+z-1}{z^{2}(z-1)}
$$

We find singularities

$$
[\{z=1\},\{z=0\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=1
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=0
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-1
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.36 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}-2 z+5}{(z-2)\left(z^{2}+1\right)}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}-2 z+5}{(z-2)\left(z^{2}+1\right)}
$$

We find singularities

$$
[\{z=2\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=2
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2)=1
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=-I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=I
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-1
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.37 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{(z+1)(z-1)}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{(z+1)(z-1)}
$$

We find singularities

$$
[\{z=1\},\{z=-1\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=\frac{1}{2}
$$

The singularity

$$
z=-1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-1)=\frac{-1}{2}
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.38 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z\left(1-z^{2}\right)}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z\left(1-z^{2}\right)}
$$

We find singularities

$$
[\{z=1\},\{z=-1\},\{z=0\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=\frac{-1}{2}
$$

The singularity

$$
z=-1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-1)=\frac{-1}{2}
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=1
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.39 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z\left(z^{2}+4\right)^{2}}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z\left(z^{2}+4\right)^{2}}
$$

We find singularities

$$
[\{z=0\},\{z=2 I\},\{z=-2 I\}]
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=\frac{1}{16}
$$

The singularity

$$
z=2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 2 I)=\frac{-1}{32}
$$

The singularity

$$
z=-2 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-2 I)=\frac{-1}{32}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.40 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z(z-1)}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z(z-1)}
$$

We find singularities

$$
[\{z=1\},\{z=0\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=1
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(f(z), 0)=-1
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.41 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z(z-1)}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z(z-1)}
$$

We find singularities

$$
[\{z=1\},\{z=0\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=1
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(f(z), 0)=-1
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

2.42 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{\left(z^{2}+1\right)^{2}}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{\left(z^{2}+1\right)^{2}}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{4} I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{4} I
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.43 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z^{3}-z^{5}}
$$

Hint.

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z^{3}-z^{5}}
$$

We find singularities

$$
[\{z=1\},\{z=-1\},\{z=0\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=\frac{-1}{2}
$$

The singularity

$$
z=-1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-1)=\frac{-1}{2}
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=1
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.44 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z^{4}+1}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z^{4}+1}
$$

We find singularities
$\left[\left\{z=\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right\},\left\{z=-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right\},\left\{z=\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right\},\left\{z=-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right\}\right]$
The singularity

$$
z=\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right)=\frac{1}{2 I \sqrt{2}-2 \sqrt{2}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z),-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right)=-\frac{1}{2 I \sqrt{2}-2 \sqrt{2}}
$$

The singularity

$$
z=\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right)=-\frac{1}{2 I \sqrt{2}+2 \sqrt{2}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z),-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right)=\frac{1}{2 I \sqrt{2}+2 \sqrt{2}}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.45 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z-z^{3}}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z-z^{3}}
$$

We find singularities

$$
[\{z=1\},\{z=-1\},\{z=0\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=\frac{-1}{2}
$$

The singularity

$$
z=-1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-1)=\frac{-1}{2}
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=1
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.46 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{1}{z}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{1}{z}
$$

We find singularities

$$
[\{z=0\}]
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=1
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-1
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.47 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{z}}{\left(z^{2}+9\right) z^{2}}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{z}}{\left(z^{2}+9\right) z^{2}}
$$

We find singularities

$$
[\{z=\infty\},\{z=-3 I\},\{z=0\},\{z=3 I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=-\frac{1}{54} \frac{I}{\left(e^{I}\right)^{3}}
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=\frac{1}{9}
$$

The singularity

$$
z=3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3 I)=\frac{1}{54} I\left(e^{I}\right)^{3}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=\frac{1}{54} \frac{I}{\left(e^{I}\right)^{3}}-\frac{1}{9}-\frac{1}{54} I\left(e^{I}\right)^{3}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.48 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{z}}{z^{2}+1}
$$

Hint.

> no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{z}}{z^{2}+1}
$$

We find singularities

$$
[\{z=\infty\},\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{2} \frac{I}{e^{I}}
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{2} I e^{I}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-\frac{1}{2} \frac{I}{e^{I}}+\frac{1}{2} I e^{I}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.49 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{e^{z}}{\left(z^{2}+9\right) z^{2}}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{e^{z}}{\left(z^{2}+9\right) z^{2}}
$$

We find singularities

$$
[\{z=\infty\},\{z=-3 I\},\{z=0\},\{z=3 I\}]
$$

The singularity

$$
z=-3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-3 I)=-\frac{1}{54} \frac{I}{\left(e^{I}\right)^{3}}
$$

The singularity

$$
z=0
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 0)=\frac{1}{9}
$$

The singularity

$$
z=3 I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 3 I)=\frac{1}{54} I\left(e^{I}\right)^{3}
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=\frac{1}{54} \frac{I}{\left(e^{I}\right)^{3}}-\frac{1}{9}-\frac{1}{54} I\left(e^{I}\right)^{3}
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given
Comment.
no_comment

2.50 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z}{(z-1)(z-2)^{2}}
$$

Hint.
no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z}{(z-1)(z-2)^{2}}
$$

We find singularities

$$
[\{z=1\},\{z=2\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=1
$$

The singularity

$$
z=2
$$

adds the following residue

$$
\operatorname{res}(f(z), 2)=-1
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.51 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{2}}{\left(z^{2}+1\right)^{2}}
$$

Hint.

no_hint

Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{2}}{\left(z^{2}+1\right)^{2}}
$$

We find singularities

$$
[\{z=-I\},\{z=I\}]
$$

The singularity

$$
z=-I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z),-I)=\frac{1}{4} I
$$

The singularity

$$
z=I
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), I)=-\frac{1}{4} I
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.52 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{4}}{z^{4}+1}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{4}}{z^{4}+1}
$$

We find singularities
$\left[\left\{z=\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right\},\left\{z=-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right\},\left\{z=\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right\},\left\{z=-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right\}\right]$
The singularity

$$
z=\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right)=-\frac{1}{2 I \sqrt{2}-2 \sqrt{2}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z),-\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right)=\frac{1}{2 I \sqrt{2}-2 \sqrt{2}}
$$

The singularity

$$
z=\frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z), \frac{1}{2} \sqrt{2}-\frac{1}{2} I \sqrt{2}\right)=\frac{1}{2 I \sqrt{2}+2 \sqrt{2}}
$$

The singularity

$$
z=-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}
$$

adds the following residue

$$
\operatorname{res}\left(\mathrm{f}(z),-\frac{1}{2} \sqrt{2}+\frac{1}{2} I \sqrt{2}\right)=-\frac{1}{2 I \sqrt{2}+2 \sqrt{2}}
$$

At infinity we get the residue

$$
\operatorname{res}(f(z), \infty)=0
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.
no_comment

2.53 Problem.

Check the Zero Sum theorem for the following function

$$
\frac{z^{5}}{(1-z)^{2}}
$$

Hint.
no_hint
Solution.
We denote

$$
\mathrm{f}(z)=\frac{z^{5}}{(1-z)^{2}}
$$

We find singularities

$$
[\{z=\infty\},\{z=1\},\{z=-\infty\}]
$$

The singularity

$$
z=1
$$

adds the following residue

$$
\operatorname{res}(\mathrm{f}(z), 1)=5
$$

At infinity we get the residue

$$
\operatorname{res}(\mathrm{f}(z), \infty)=-5
$$

and finally we obtain the sum

$$
\sum \operatorname{res}(\mathrm{f}(z), z)=0
$$

Info.
not_given

Comment.

> no_comment

3 Power series problems

Example

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}
$$

3.1 Problem.

Sum the following power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{(n+1)} z^{n}}{n}
$$

Hint.
derive_once_and_sum

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{(-1)^{(n+1)} z^{n}}{n}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{(-1)^{(n+2)} z^{(n+1)}}{n+1}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{z^{(n+1)} n}{(n+1) z^{n}}\right|=|z|
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{(-1)^{(n+1)} z^{n}}{n}\right]^{\left(\frac{1}{n}\right)}=|z|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{(n+1)} z^{n}}{n}=\ln (1+z)
$$

Info.
not_given

Comment.

3.2 Problem.

Sum the following power series

$$
\sum_{n=1}^{\infty}(-1)^{n} n^{2} z^{n}
$$

Hint.
divide_by_z_and_integrate

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=(-1)^{n} n^{2} z^{n}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=(-1)^{(n+1)}(n+1)^{2} z^{(n+1)}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} z^{(n+1)}}{n^{2} z^{n}}\right|=|z|
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[(-1)^{n} n^{2} z^{n}\right]^{\left(\frac{1}{n}\right)}=|z|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=1}^{\infty}(-1)^{n} n^{2} z^{n}=-\frac{z(-z+1)}{(1+z)^{3}}
$$

Info.
not_given

Comment.
no_comment

3.3 Problem.

Sum the following power series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} n^{3} z^{n}}{(n+1)!}
$$

Hint.

> manipulate_the_numerator_to_cancel

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{(-1)^{n} n^{3} z^{n}}{(n+1)!}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{(-1)^{(n+1)}(n+1)^{3} z^{(n+1)}}{(n+2)!}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{3} z^{(n+1)}(n+1)!}{(n+2)!n^{3} z^{n}}\right|=0
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{(-1)^{n} n^{3} z^{n}}{(n+1)!}\right]^{\left(\frac{1}{n}\right)}=\left|\lim _{n \rightarrow \infty}\left(\frac{(-1)^{n} n^{3} z^{n}}{(n+1)!}\right)^{\left(\frac{1}{n}\right)}\right|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(-1)^{n} n^{3} z^{n}}{(n+1)!}= \\
& \quad-\frac{1}{2} z\left(2 \frac{1-e^{(-z)}(1+z)}{z^{2}}-12 \frac{1-e^{(-z)}\left(1+z+\frac{1}{2} z^{2}\right)}{z^{2}}+12 \frac{1-e^{(-z)}\left(1+z+\frac{1}{2} z^{2}+\frac{1}{6} z^{3}\right)}{z^{2}}\right)
\end{aligned}
$$

Info.
not_given
Comment.
no_comment

3.4 Problem.

Sum the following power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} z^{n}}{n(2 n-1)}
$$

Hint.
make_the_power_2n_and_derive_twice

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{(-1)^{n} z^{n}}{n(2 n-1)}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{(-1)^{(n+1)} z^{(n+1)}}{(n+1)(2 n+1)}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{z^{(n+1)} n(2 n-1)}{(n+1)(2 n+1) z^{n}}\right|=|z|
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{(-1)^{n} z^{n}}{n(2 n-1)}\right]^{\left(\frac{1}{n}\right)}=|z|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} z^{n}}{n(2 n-1)}=-z \text { hypergeom }\left(\left[1,1, \frac{1}{2}\right],\left[\frac{3}{2}, 2\right],-z\right)
$$

Info.
not_given

Comment.

3.5 Problem.

Sum the following power series

$$
\sum_{n=0}^{\infty} \frac{(2 n+1) z^{n}}{n!}
$$

Hint.
prepare_a_combination_of_exponentials
Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{(2 n+1) z^{n}}{n!}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{(2 n+3) z^{(n+1)}}{(n+1)!}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{(2 n+3) z^{(n+1)} n!}{(n+1)!(2 n+1) z^{n}}\right|=0
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{(2 n+1) z^{n}}{n!}\right]^{\left(\frac{1}{n}\right)}=\left|\lim _{n \rightarrow \infty}\left(\frac{(2 n+1) z^{n}}{n!}\right)^{\left(\frac{1}{n}\right)}\right|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=0}^{\infty} \frac{(2 n+1) z^{n}}{n!}=2 e^{z}\left(\frac{1}{2}+z\right)
$$

Info.
not_given

Comment.

3.6 Problem.

Sum the following power series

$$
\sum_{n=0}^{\infty} \frac{\left(n^{2}-2\right) z^{n}}{2^{n} n!}
$$

Hint.

prepare_a_combination_of_exponentials

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{\left(n^{2}-2\right) z^{n}}{2^{n} n!}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{\left((n+1)^{2}-2\right) z^{(n+1)}}{2^{(n+1)}(n+1)!}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty} \frac{2^{n}\left|\frac{\left((n+1)^{2}-2\right) z^{(n+1)} n!}{(n+1)!\left(n^{2}-2\right) z^{n}}\right|}{2^{(n+1)}}=0
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{\left(n^{2}-2\right) z^{n}}{2^{n} n!}\right]^{\left(\frac{1}{n}\right)}=\left|\lim _{n \rightarrow \infty}\left(\frac{\left(n^{2}-2\right) z^{n}}{2^{n} n!}\right)^{\left(\frac{1}{n}\right)}\right|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series
$\sum_{n=0}^{\infty} \frac{\left(n^{2}-2\right) z^{n}}{2^{n} n!}=-2 e^{(1 / 2 z)}+\frac{1}{2} \sqrt{2} e^{(1 / 2 z)} z+\frac{1}{2}(-\sqrt{2}+1) e^{(1 / 2 z)} z+\frac{1}{4} e^{(1 / 2 z)} z^{2}$
Info.
not_given

Comment.

3.7 Problem.

Sum the following power series

$$
\sum_{n=0}^{\infty} n(n+1) z^{n}
$$

Hint.
divide_by_z_and_integrate_twice

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=n(n+1) z^{n}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=(n+1)(n+2) z^{(n+1)}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+2) z^{(n+1)}}{n z^{n}}\right|=|z|
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[n(n+1) z^{n}\right]^{\left(\frac{1}{n}\right)}=|z|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=0}^{\infty} n(n+1) z^{n}=-2 \frac{z}{(z-1)^{3}}
$$

Info.
not_given

Comment.
no_comment

3.8 Problem.

Sum the following power series

$$
\sum_{n=0}^{\infty} \frac{n z^{n}}{5^{n}}
$$

Hint.
divide_by_z_and_integrate

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{n z^{n}}{5^{n}}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{(n+1) z^{(n+1)}}{5^{(n+1)}}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty} \frac{5^{n}\left|\frac{(n+1) z^{(n+1)}}{n z^{n}}\right|}{5^{(n+1)}}=\frac{1}{5}|z|
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{n z^{n}}{5^{n}}\right]^{\left(\frac{1}{n}\right)}=\left|\lim _{n \rightarrow \infty}\left(\frac{n z^{n}}{5^{n}}\right)^{\left(\frac{1}{n}\right)}\right|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=0}^{\infty} \frac{n z^{n}}{5^{n}}=5 \frac{z}{(z-5)^{2}}
$$

Info.
not_given

Comment.

3.9 Problem.

Sum the following power series

$$
\sum_{n=1}^{\infty} n^{2} z^{(n-1)}
$$

Hint.
integrate_divide_by_z_and_integrate

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=n^{2} z^{(n-1)}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=(n+1)^{2} z^{n}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} z^{n}}{n^{2} z^{(n-1)}}\right|=|z|
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[n^{2} z^{(n-1)}\right]^{\left(\frac{1}{n}\right)}=|z|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=1}^{\infty} n^{2} z^{(n-1)}=\frac{1+z}{(-z+1)^{3}}
$$

Info.
not_given

Comment.
no_comment

3.10 Problem.

Sum the following power series

$$
\sum_{n=0}^{\infty} \frac{z^{(2 n)}}{(2 n)!}
$$

Hint.
manipulate_to_exponentials

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{z^{(2 n)}}{(2 n)!}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{z^{(2 n+2)}}{(2 n+2)!}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{z^{(2 n+2)}(2 n)!}{(2 n+2)!z^{(2 n)}}\right|=0
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{z^{(2 n)}}{(2 n)!}\right]^{\left(\frac{1}{n}\right)}=0
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=0}^{\infty} \frac{z^{(2 n)}}{(2 n)!}=\cosh (z)
$$

Info.
not_given

Comment.

3.11 Problem.

Sum the following power series

$$
\sum_{n=0}^{\infty} \frac{z^{(2 n-1)}}{(2 n-1)!}
$$

Hint.
manipulate_to_exponentials

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{z^{(2 n-1)}}{(2 n-1)!}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{z^{(2 n+1)}}{(2 n+1)!}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{z^{(2 n+1)}(2 n-1)!}{(2 n+1)!z^{(2 n-1)}}\right|=0
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{z^{(2 n-1)}}{(2 n-1)!}\right]^{\left(\frac{1}{n}\right)}=\left|\lim _{n \rightarrow \infty}\left(\frac{z^{(2 n-1)}}{(2 n-1)!}\right)^{\left(\frac{1}{n}\right)}\right|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=0}^{\infty} \frac{z^{(2 n-1)}}{(2 n-1)!}=\sinh (z)
$$

Info.
not_given

Comment.

3.12 Problem.

Sum the following power series

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n(n+1)}
$$

Hint.
multiple_by_z_and_derive_twice

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{z^{n}}{n(n+1)}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{z^{(n+1)}}{(n+1)(n+2)}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{z^{(n+1)} n}{(n+2) z^{n}}\right|=|z|
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{z^{n}}{n(n+1)}\right]^{\left(\frac{1}{n}\right)}=|z|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n(n+1)}=\frac{1}{2} z\left(2 \frac{\left(-\frac{\ln (-z+1)}{z}-1\right)(z-1)}{z}-\frac{-2 z+2}{z-1}\right)
$$

Info.
not_given

Comment.

3.13 Problem.

Sum the following power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Hint.

manipulate_to_exponentials

Solution.
We denote the n-th term in the series by

$$
\mathrm{a}(n)=\frac{z^{n}}{n!}
$$

For the ratio test we need the term $a(n+1)$

$$
\mathrm{a}(n+1)=\frac{z^{(n+1)}}{(n+1)!}
$$

Ratio test computes

$$
\lim _{n \rightarrow \infty} \frac{|a(n+1)|}{|a(n)|}
$$

and obtains in our case

$$
\lim _{n \rightarrow \infty}\left|\frac{z^{(n+1)} n!}{(n+1)!z^{n}}\right|=0
$$

Moreover we can check the root test computing

$$
\lim _{n \rightarrow \infty} \sqrt[n]{|a(n)|}
$$

and obtain in our case

$$
\lim _{n \rightarrow \infty}\left[\frac{z^{n}}{n!}\right]^{\left(\frac{1}{n}\right)}=\left|\lim _{n \rightarrow \infty}\left(\frac{z^{n}}{n!}\right)^{\left(\frac{1}{n}\right)}\right|
$$

From this we conclude the radius of convergence R. For $|z|<R$ we sum the series using common tricks for power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=e^{z}
$$

Info.
not_given

Comment.

